Regulación genética y fisiológica del desarrollo de los pelos radiculares

Contenido principal del artículo

Elda Marí­a Beltrán Peña
José López Bucio
Lourdes Iveth Macias Rodrí­guez
Cesar Nahím Maldonado Cortés

Resumen

Los pelos radiculares son extensiones largas y tubulares de células epidérmicas que juegan un papel importante en la captación de agua y nutrientes, en la secreción de compuestos orgánicos y, en las interacciones con los microorganismos del suelo. Estas estructuras se diferencian por señales que surgen de las células subyacentes del córtex, seguido de una fase de elongación celular. En este proceso participan procesos genéticos y fisiológicos, que pueden estar fuertemente influenciados por señales externas. En particular, la disponibilidad de nutrientes y la presencia de microorganismos en el suelo, modifican la estructura del pelo radicular implicando distintos mecanismos de señalización en la planta. Hasta ahora, existe escasa información sobre las redes de regulación que subyacen en estos programas de organogénesis. En esta revisión se presentan los avances recientes sobre los procesos genéticos y fisiológicos que regulan el desarrollo del pelo radicular, destacando cómo las señales externas impactan en su morfogénesis.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Beltrán Peña, E. M., López Bucio, J., Macias Rodrí­guez, L. I., & Maldonado Cortés, C. N. (2016). Regulación genética y fisiológica del desarrollo de los pelos radiculares. Ciencia Nicolaita, (66), 62–83. https://doi.org/10.35830/cn.vi66.225
Sección
Biología y Química
Biografía del autor/a

Elda Marí­a Beltrán Peña, IIQB de la UMSNH

Profesor Investigador Titular

IIQB de la UMSNH

José López Bucio, IIQB de la UMSNH

Profesor Investigador Titular

IIQB de la UMSNH

Lourdes Iveth Macias Rodrí­guez, IIQB de la UMSNH

Profesor Investigador Titular

IIQB de la UMSNH

Cesar Nahím Maldonado Cortés, IIQB de la UMSNH

Estudiante de la Maestrí­a en Biologí­a Experimental

Citas

Alonso J.M. y A.N. Stepanova. 2004. The ethylene signaling pathway. Science 306: 1513-1515.

Bates T.R. y J.P. Lynch. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environment 19: 529-538.

Bates T.R. y J.P. Lynch. 2000. Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). American Journal Botany 87: 958-963.

Béguiristain T. y F. Lapeyrie. 1997. Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytologist 136: 525-532.

Benítez M., N.A. Monky E.R. Alvarez-Buylla. 2011. Epidermal patterning in Arabidopsis: models make a difference. Journal of Experimental Zoology (Molecular Developmental Evolution) 316: 241-53.

Bernal A.J., C.M. Yoo, M. Mutwil, J.K. Jensen, G. Hou, C. Blaukopf, I. Sorensen, E.B. Blancaflor, H.V. Scheller y W.G. Willats. 2008. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. PlantPhysiology 148: 1238-1253.

Bibikova T. y S. Gilroy. 2003. Root hair development. Journal Plant Growth Regulation 21: 383-415.

Carol R.J., S. Takeda, P. Linstead, M.C. Durrant, H. Kakesova, P. Derbyshire, S. Drea, V. Zarsky y L. Dolan. 2005. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438: 1013-1016.

Cho H.T. y D.J. Cosgrove. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237-3253.

Clowes F.A.L. 2000. Pattern in root meristem development in angiosperms. New Phytologist 146: 83-94.

Datta S., C.M. Kim, M. Pernas, N.D. Pires, H. Proust, T. Tam, P. Vijayakumar y L. Dolan. 2011. Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346: 1-14.

Deeks M.J., C. Rodrigues, S. Dimmock, T. Ketelaar, S.K. Maciver, R. Malhó y P.J. Hussey. 2007. Arabidopsis CAP1 a key regulator of actin organisation and development. Journal Cell Science 120: 2609-2618.

Di Cristina M., G. Sessa, L. Dolan, P. Linstead, S. Baima, I. Ruberti y G. Morelli. 1996. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant Journal 10:393-402.

Dobbelaere S., A. Croonenborghs, A. Thys, B.A. Vandey J. Vanderleyden. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212: 155-164.

Dolan L., C. Duckett, C. Grierson, P. Linstead, K. Schneider, E. Lawson, C. Dean, R.S. Poethig y K. Roberts. 1994. Clonal relations and patterning in the root epidermis of Arabidopsis. Development 120: 2465-2474.

Dolan L. y S. Costa. 2001. Evolution and genetics of root hair stripes in the root epidermis. Journal Experimental Botany 52: 413-417.

Favery B., E. Ryan, J. Foreman, P. Linstead, K. Boudonck, M. Steer, P. Shaw y L. Dolan. 2001. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Development 15: 79-89.

Fischer U., Y. Ikeda, K. Ljung, O. Serralbo, M. Singh, R. Heidstra, K. Palme, B. Scheres y M. Grebe. 2006. Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Current Biology 16: 2143-2149.

Foreman J., V. Demidchik, J.H.F. Bothwell, P. Mylona, H. Miedema, M.A. Torres, P. Linstead, S. Costa, C. Brownlee, J.D.G. Jonesk, J.M. Davies y L. Dolan. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446.

Grierson C., E. Nielsen, T. Ketelaar y J. Schiefelbein. 2014. Root hairs. P. 1-25. En: The Arabidopsis Book. (Torii K. Ed.) American Society of Plant Biologists.

Gu Y., Y. Fu, P. Dowd, Li S., V. Vernoud, S. Gilroy y Z. Yang. 2005. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. Journal Cell Biology 169: 127-138.

Imaizumi-Anraku H., N. Takeda, M. Charpentier, J. Perry, H. Miwa, Y. Umehara, H. Kouchi, Y. Murakami, L. Mulder, K. Vickers, J. Pike, J.A. Downie, T. Wang, S. Sato, E. Asamizu, S. Tabata, M. Yoshikawa, Y. Murooka, G.J. Wu, M. Kawaguchi, S. Kawasaki, M. Parniske y M. Hayashi. 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433: 27-531.

Jones M.A., M.J. Raymond y N. Smirnoff. 2006. Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant Journal 45: 83-100.

Kapulnik Y., P.M. Delaux, N. Resnick, E. Mayzlish-Gati, S. Wininger, C. Bhattacharya, N. Sejalón-Delmas, J.P. Combier, G. Bécard, E. Belausov, T. Beeckman, E. Dor, J. Hershenhorn y H. Koltai. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233: 209-216.

Kuppusamy K.T., A.Y. Chen y J.L. Nemhauser. 2009. Steroids are required for epidermal cell fate establishment in Arabidopsis roots. Proceedings National Academy Sciences 106: 8073-8076.

Lee M.M. y J. Schiefelbein. 1999. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99: 473-483.

Leyser H.M.O., F.B. Pickett, S. Dharmasiri y M. Estelle. 1996. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant Journal 10: 403-413.

Libault M., L. Brechenmacher, J. Cheng, D. Xu y G. Stacey. 2010. Root hair systems biology. Trends Plant Science 15: 641-650.

López-Bucio J., A. Cruz-Ramírez y L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Current Opinion Plant Biology 6: 280-287.

López-Bucio J., J.C. Campos-Cuevas, E. Hernández-Calderón, C. Velásquez-Becerra, R. Farías-Rodríguez, L.I. Macías-Rodríguez y E. Valencia-Cantero. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant Microbe Interactions 20: 207-217.

Ma Z., D.G. Bielenberg, K.M. Brown y J.P. Lynch. 2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environment 24: 459-467.

Masucci J.D., y J.W. Schiefelbein. 1994. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin and ethylene-associated process. Plant Physiology 106: 1335-1346.

Masucci J.D. y J.W. Schiefelbein. 1996. Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505-1517.

Monshausen G.B., T.N. Bibikova, M.A. Messerli, C. Shi y S. Gilroy. 2007. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proceedings National Academy Science 104: 20996-21001.

Muday G.K., A. Rahman y B. M. Binder. 2012. Auxin and ethylene: collaborators or competitors. Trends Plant Science 17: 181-195.

Nishimura T., E. Yokota, T. Wada, T. Shimmen y K. Okada. 2003. An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiology 44: 1131-1140.

Ortíz-Castro R., M. Martínez-Trujillo y J. López-Bucio. 2008. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environment 31: 1497-1509.

Ortiz-Castro R., C. Díaz-Pérez, M. Martínez-Trujillo, R.E. del Río, J. Campos-García y J. López-Bucio. 2011. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proceedings National Academy Science 108: 7253-7258.

Pei W., F. Du, Y. Zhang, T. He y H. Ren. 2012. Control of the actin cytoskeleton in root hair development. Plant Science 187:10-18.

Pickett F.B., A.K. Wilson y M. Estelle.1990. The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiology 94: 1462-1466.

Prieto P., E. Schiliró, Maldonado M.M., González, R. Valderrama, J.B. Barroso-Albarracín y J.Mercado-Blanco. 2011. Root hairs play a key role in the endophytic colonization of Olive roots by Pseudomonas spp. with biocontrol activity. Microbiol Ecology 62: 435-445.

Rahman A., S. Hosokawa, Y. Oono, T. Amakawa, N. Gotoy S. Tsurumi. 2002. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology 130: 1908-1917.

Sauer M., S. Robert y J. Kleine-Vehn. 2013. Auxin: simply complicated. Journal of Experimental Botany. 64: 2565-2577.

Schiefelbein J. 2003. Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Current Opinion Plant Biology 6: 74-78.

Schiefelbein J.W. y Somerville C. 1990. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2: 235-243.

Schmidt W., J. Tittel y A. Schikora. 2000. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiology 122: 1109-1118.

Schmidt W. y A. Schikora. 2001. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiology 125: 2078-2084.

Shin R. y D.P. Schachtman. 2004. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings National Academy Science 101: 8827-8832.

Shin R., R.H. Berg y D.P. Schachtman. 2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiology 46: 1350-1357.

Sisti D., G. Giomaro, M. Cecchini, A. Faccio, M. Novero y P. Bonfante. 2003. Two genetically related strains of Tuber borchii produce Tilia mycorrhizas with different morphological traits. Mycorrhiza 13: 107-115.

Splivallo R., U. Fischer, C. Gobel, I. Feussner y P. Karlovsky. 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene.

Plant Physiology 150: 2018–2029.

Strader L.C., G.L. Chen y B. Bartel. 2010. Ethylene directs auxin to control root cell expansion. Plant Journal 64: 874-884.

Sukumar P., V. Legué, A. Vayssieres, F. Martin, G.A. Tuskan y U.C. Kalluri. 2013. Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environment 36: 909-919.

Swarup R., P. Perry, D. Hagenbeek, D. Van Der Straeten, G.T. Beemster, G. Sandberg, R. Bhalerao, K. Ljung y M.J. Bennett. 2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186-2196.

Van Bruaene N., G. Joss, y P. Van Oostveldt. 2004. Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiology 136: 3905-3919.

Wada T., T. Kurata, R. Tominaga, Y. Koshino-Kimura, T. Tachibana, K. Goto, M.D. Marks, Y. Shimura y K. Okada. 2002. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129: 5409-5419.

Wilson A., F.B. Pickett, J.C. Turner y M. Estelle. 1990. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Molecular General Genetics 222: 377-383.

Yi K., B. Menand, E. Bell y L. Dolan. 2010. A basic helix-loophelix transcription factor controls cell growth and size in root hairs. Nature Genetics 42: 264-267.

Yoo S.D., Y. Cho y J. Sheen. 2009. Emerging connections in the ethylene signaling network. Trends Plant Science 14: 270-279.

Zamioudis C., P. Mastranesti, P. Dhonukshe, I. Blilou y M.J. Pietersen. 2013. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiology 162: 304-318.

Zhu C., L. Gan, Z. Shen y K. Xia. 2006. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. Journal Experimental Botany 57: 1299-1308