Regulación molecular de la germinación en angiospermas
PDF

Cómo citar

Beltrán Peña, E. M., López-Garcí­a, M., & López-Bucio, J. (2017). Regulación molecular de la germinación en angiospermas. Ciencia Nicolaita, (67), 37–54. https://doi.org/10.35830/cn.vi67.223

Resumen

El proceso de germinación es decisivo en el ciclo de vida de las plantas, ya que permite la formación de una nueva plántula y contribuye en la propagación de los cultivos. La germinación comienza con la captura de agua a través de la capa de mucilago presente en la testa y finaliza con la emergencia de la raíz y los cotiledones. Factores externos como la estructura del suelo, la calidad de luz y la disponibilidad de nutrientes rompen la dormancia de la semilla a través de cambios en los niveles de ácido abscísico (ABA) y ácido giberélico (GA). El ABA es responsable de la dormancia de la semilla, en tanto que el GA promueve la apertura de la testa. Arabidopsis thaliana es el mejor modelo para estudiar la germinación en angiospermas. Varias cascadas de señalización y factores de transcripción están conservados en Arabidopsis y en plantas cultivadas como el maíz (Zea mays L.). En esta revisión analizaremos el conocimiento actual sobre los mecanismos moleculares que regulan la germinación.

https://doi.org/10.35830/cn.vi67.223
PDF

Citas

Albert S, Delseny M y Devic M.1997. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant Journal 11: 289–299

Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P y Jullien M. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta219: 479-488.

Angelovici R, Galili G, Fernie AR y Fait A. 2010. Seed desiccation: a bridge between maturation and germination. Trends in Plant Science.15: 211–218

Arc E, Sechet J, Corbineau F, Rajjou L y Marion-Poll A. 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.Frontiers in Plant Science 4: 1-19.

Barua D, Butler C, Tisdale TE y Donohue K. 2012.Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms. Annals of Botany109: 209-226.

Baskin JM y Baskin CC. 1983. Seasonal changes in the germination responses of buried seeds of Arabidopsis thaliana and ecological interpretation. Botanical Gazette 144: 540–543.

Baskin CC y Baskin JM. 1998. Seeds: ecology, biogeography and evolution of dormancy and germination. San Diego, CA: Academic Press.

Baskin JM y Baskin CC. 2004.A classification system for seed dormancy. Seed Science Research14: 1-16.

Beaudoin N, Serizet C, Gosti F y Giraudat J. 2000. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12: 1103-1115.

Bentsink L y Koornneef M. 2008.Seed dormancy and germination. The Arabidopsis Book/American Society of Plant Biologists6.

Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW y Jones RL. 2007. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology143:1173-118.

Bewley JD y Black M. 1994. Seeds; Physiology of development and germination. New York: Plenum Press.

Bewley JD. 1997. Seed germination and dormancy. Plant Cell 9: 1055-1066.

Bowman JL y Floyd SK, 2008. Patterning and polarity in seed plant shoots. Annual Reviews Plant Biology 59: 67-88.

Busk PK y Pages M. 1998.Regulation of abscisic acid-induced transcription. Plant Molecular Biology 37: 425–435.

Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P y Becraft PW. 2007. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiology 143: 720-731.

Capron A, Chatfield S, Provart N y Berleth T. 2009. Embryogenesis: pattern formation from a single cell. The Arabidopsis book/American Society of Plant Biologists, 7.

Chakrabortee S, Tripathi R, Watson M, Schierle GS y Kurniawan DP. 2012. Intrinsically disordered proteins as molecular shields. Molecular Biosystems. 8: 210-219.

Chaudhury AM, Letham S, Craig S y Dennis ES. 1993. amp1 a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant Journal 4: 907-916.

Chen M, Wang Z, Zhu Y, Li Z, Hussain N, Xuan L y Jiang L. 2012. The effect of transparent TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiology 160:1023-1036.

Chiu RS, Nahal H, Provart NJ y Gazzarrini S. 2012.The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology 12: 15.

Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M y Vachon G. 2004. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology 136:3660-3669.

Debeaujon I, Léon-Kloosterziel KM y Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122: 403-414.

Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EW y Cutler AJ. 2011. The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23: 1772-1794.

Finch-Savage WE y Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytologist 171: 501–23

Fujioka S y Yokota T. 2003. Biosynthesis and metabolism of brassinosteroids. Annual Reviews Plant Biology 54: 137–164.

Galland M, Huguet R, Arc E, Cueff G, Job D y Rajjou L. 2014. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Molecular and Cellular Proteomics 131: 252-268.

Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M y McCourt P. 2004. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell 7:373-385.

Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F y Goodman HM. 1992. Isolation of the Arabidopsis AB13 gene by positional cloning. Plant Cell 4: 1251–1261

Goldberg RB, Paiva G y Yadegari R. 1994. Plant embryogenesis: zygote to seed. Science 266: 605-614.

Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP y Thomas SG. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18: 3399-3414.

Griffiths J, Barrero JM, Taylor J, Helliwell CA y Gubler F. 2011. ALTERED MERISTEM PROGRAM 1 is involved in development of seed dormancy in Arabidopsis. PLoS One 6: e20408.

Gutierrez L, Van Wuytswinkel O, Castelain M y Bellini C. 2007. Combined networks regulating seed maturation. Trends in Plant Science12:294-300.

Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES y Chaudhury A. 2001. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13: 2115-2125.

Holdsworth MJ, Bentsink L y Soppe WJ. 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179: 33-54.

Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T y Parcy F. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science 7: 106–111.

Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY y Lin WH. 2013. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology 162: 1965-1977.

Junker A y Bäumlein H. 2012. Multifactoriality of the LEC1 transcription factor during plant development. Plant Signaling and Behavior 7: 1718-1720.

Kagaya Y, Hobo T, Murata M, Ban A y Hattori T. 2002. Abscisic acid–induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14: 3177-3189.

Kamisugi Y y Cuming AC. 2005. The evolution of the abscisic acid response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals. Plant Molecular Biology 59: 723-737

Koornneef M y Vanderveen JH.1980. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theoretical and Applied Genetics 58: 257–263.

Koornneef M, Reuling G y Karssen CM. 1984. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum 61: 377–383.

Koornneef M, Bentsink L y Hilhorst H. 2002. Seed dormancy and germination. Current Opinion in Plant Biology 5: 33-36.

Kucera B, Cohn MA y Leubner-Metzger G. 2006. Plant hormone interactions during seed dormancy release and germination. Seed Science Research15: 281-307.

Le BH, Cheng C., Bui A Q, Wagmaister JA, Henry KF, Pelletier J,Kwong L, Belmonte M, Kirkbride R, Horyath S, Drews GN, Fischer R, Okamuro JK, Harada JJ y Goldberg RB. 2010. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors.Proceedings of the National Academy of Sciences of the United States of America 107: 8063–70

Lee KP, Piskurewicz U, Tureckova V, Strnad M y Lopez-Molina L. 2010. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proceedings of the National Academy of Sciences of the United States of America 107: 19108–19113.

Lee S, Cheng H, King KE, Wang W, He Y, Hussain A y Peng J. 2002. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes and Development 16: 646-658.

León-Kloosterziel KM, Keijzer CJ y Koornneef M.1994. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6: 385–392.

Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H y Carrington JC. 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and postgermination stages. Plant Journal 52: 133-146.

Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT y Chua NH. 2002. ABI5 acts down.32: 317–328.

Lu QS, dela Paz J, Pathmanathan A, Chiu RS, Tsai AY y Gazzarrini S. 2010. The C-terminal domain of FUSCA3 negatively regulates mRNA and protein levels and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis. Plant Journal 64:100-113.

Mansfield SG y Briarty LG. 1991. Early embryogenesis in Arabidopsis thaliana: I. The developing embryo. Canadian Journal of Botany 69: 461-476.

Masucci JD y Schiefelbein JW. 1996. Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505–1517.

Mcabee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Reddy GV, Meyerowitz EM, Bowman JL y Gasser CS. 2006. ABERRANT TESTA SHAPE encodes a Kanadi family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant Journal 46: 522-531.

McCarty DR, Carson CB, Stinard PS y Robertson DS. 1989. Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1: 523-532.

McCarty DR. 1995. Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology 46: 71–93.

Méndez-Ferreira GD, Covarrubias-Robles A y Beltrán-Peña E. 2013. Procesos moleculares involucrados en la protección de las semillas a la desecación. Biológicas 15:42-48.

Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M y Matsuoka M. 2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology 141: 924–93.

Muller K, Tintelnot S y Leubner-Metzger G. 2006. Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiology 47: 864–877.

Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y y Naito S. 2000. The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Developmental Biology 220:412-423.

Nogue N, Hocart H, Letham DS, Dennis ES y Chaudhury AM. 2000. Cytokinin synthesis is higher in the Arabidopsis amp1 mutant. Plant Growth Regulation 32: 267-273.

Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y y Yokota T. 2007. Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology 143: 1680–1688.

Ohto MA, Floyd SK, Fischer RL, Goldberg RB y Harada JJ. 2009. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sexual Plant Reproduction 22: 277–289.

Penfield S, Josse EM, Kannagara R, Gilday AD, Halliday KJ y Graham IA. 2005. Cold and light control seed germination through the bHLH transcription factor SPATULA. Current Biology 15: 1998–2006.

Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C y Job D. 2008. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology 148: 620 – 641.

Rerie WG, Feldmann KA y Marks MD. 1994 The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Genes Development 8: 1388–1399

Saibo NJ, Vriezen WH, De Grauwe L, Azmi A, Prinsen E y Van Der Straeten D. 2007. A comparative analysis of the Arabidopsis mutant amp1-1 and a novel weak amp1 allele reveals new functions of the AMP1 protein. Planta 225: 831-842.

Soderman EM, Brocard IM, Lynch TJ y Finkelstein RR. 2000. Regulation and function of the Arabidopsis ABA-insensitive 4 gene in seed and abscisic acid response signaling networks. Plant Physiology 124: 1752–1765.

Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S y Xie Q. 2013. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genetics 9: e1003577.

Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N y Scott RJ. 2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133: 251–261

Sun X, Shantharaj D, Kang X y Ni M. 2010 Transcriptional and hormonal signaling control of Arabidopsis seed development. Current Opinion in Plant Biology13: 611–620.

Suzuki M, Kao CY, Cocciolone S y McCarty DR. 2001. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant Journal 28: 409-418.

Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR y Sun TP. 2004. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis.Plant Physiology 135: 1008–1019.

Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES y Luo M. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant Journal 63: 670–679.

Wolkers WF, McCready S, Brandt WF, Lindsey GG y Hoekstra FA. 2001. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochimica et Biophysica Acta 1544: 196–206

Xi W, Liu C, Hou X, y Yu H. 2010. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22: 1733-1748.

Yamaguchi S, Smith MW, Brown RGS, Kamiya Y y Sun T. 1998. Phytochrome regulation and differential expression of gibberellins 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10: 2115-2126.

Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H y Wang X. 2010. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences of the United States of America 107: 6100–6

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2017 Elda Marí­a Beltrán Peña, MARINA López-Garcí­a, José López-Bucio