Diseño de una Arquitectura de Red Neuronal Convolucional para la clasificación de objetos
PDF

Cómo citar

García Villanueva, M., & Romero Muñoz, L. (2021). Diseño de una Arquitectura de Red Neuronal Convolucional para la clasificación de objetos. Ciencia Nicolaita, (81), 46-61. Recuperado a partir de https://www.cic.cn.umich.mx/cn/article/view/517

Resumen

Uno de los problemas más importantes y fundamentales en el área de Visión Computacional es la detección de objetos. Existe una gran cantidad de aplicaciones que requieren encontrar objetos en una escena y entonces clasificarlos, considerando la complejidad existente cuando se presentan varias categorías de objetos. El surgimiento de las técnicas de aprendizaje profundo han llegado como una estrategia muy poderosa en la extracción automática de características a partir de las imágenes, provocando mejoras importantes en la problemática asociada a la detección de objetos. El objetivo de este artículo es presentar el diseño de una arquitectura de Red Neuronal Convolucional adecuada para clasificar 6 categorías diferentes de objetos comunes: cama, escalera, mesa, puerta, silla y sofá. Los resultados obtenidos indican una precisión superior al 90% en los experimentos realizados.

PDF
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.