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Resumen
Se presentan hitos históricos de las ciencias matemáticas y sus consecuencias filosóficas de manera generalmente compren-
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Introducción

Following a subjectively selected compi-
lation of historical landmarks, I will describe 
my point of view of mathematics and related 
sciences from the past to the present, drawing 
conclusions on the way and focusing not 
only on the results, but also on the motiva-
tions and convictions of the protagonists, in 
order to support a conjecture for the future. 
The stories that I have heard from rumors, I                                                                                              
checked in the internet1.2Some parts of the 
work were inspired by the 23 mathemati-
cal challenges of the London Institute of 
Mathematical Science3. For further discus-
sion, everybody is welcome to contact the 
author.

The Past 

Mathematics is one of the oldest sci-                  
ences. It started with counting, as we can still 
see on our unfortunate number system with 
base ten - ten fingers - or twenty, in the case 
of the Maya. If our ancestors had chosen 2 
as base, our kids would have to learn only                                                                                                                                             

operations instead of  
and we could count with our fingers up to 

. Our curiosity for other sci-                                                                 
ences also started at early ages, for                                                                 
in stance chemistry (starting a fire), bi-                   
ology (planting a seed to multiply it after                                                                                                            
a few months), physics (throwing a                                                
stone to hit an enemy), medicine                                                                                 
(taking a plant to ease the pain), astronomy                                                                          
(observing the sun, the moon and the 
stars), and so on. It seems that all started                                                                                              
with experimental science by observing                                                                                  
and performing experiments (e.g. throwing 
stones repeatedly at a fixed target), all but  
mathematics, which used abstraction at an 
early stage, replacing for instance equivalent 

finite sets by numbers, ignoring all properties 
of the elements and just assigning the same 
word for all finite sets with the same number 
of elements. It was probably the first science 
that solved problems in a completely men-
tal way: If I get one pot for ten apples, how 
many apples do I need for three pots? It also 
was the first science that could predict the 
non-immediate future of human life in 
non-periodic events: If I need one bag of food 
to survive, then my family of 5 will need five 
bags. Predicting the future is still a major in-
terest of mankind, it is of such an enormous 
interest that fortune telling survived until our 
modern society.

The beginning of modern mathematics  
can be dated back to the  flourishing of cities 
in Mesopotamia, India, China, and Egypt, 
when trading was essential and mathematics 
thus necessary. A similar development can 
be observed in the cities of the ancient civ-                                                                                                                                             
ilizations of the Americas, where, apart from 
commerce, mathematics was used intensely 
in astronomical calculations. However, this 
report will mainly focus on the development 
in Eurasia because the base of modern mathe-
matics was set there. 

With the emergence of consciousness, 
other non-essential questions arose, for in- 
stance: Who am I? Where do I come from? 
Where will I go to? Unfortunately, our            
brain gets troubled with questions that it 
can’t answer, so answers were given without 
knowing the facts. That’s how religion took 
over and there, where religion was coupled 
with power, the answers to these questions 
became dogmas and contradictory answers 
were not allowed. Fear was used to manipu-
late people, which still works as one can see 
in any election battle (fear of economic loss, 
fear of immigrants, fear of a virus or a vac-
cine, etc.). As a consequence, religion turned 

1 [0]             2 [1]             3 [2]
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into the greatest obstacle to science. Thus, a 
further

 rapid progress of science demanded 
a separation of believing and thinking. That 
was the period when philosophy arose to be-
come the major force for acquiring human 
knowledge. 

Interestingly, the early Greek philo-
sophers like Thales of Miletus, Pythago-
ras and Euclid did not distinguish between 
mathematics and philosophy, mathematics 
was simply a part of philosophy and both dis-
ciplines posed such seemingly useless ques-
tions as “What happens after death?” or “Is the 
square root of 2 a rational number?” 
Mathematics served as an inspiration for truth 
(in the sense of proving statements) and deduc-
tive reasoning. From that time on, mathe-
matics has been a permanent companion of 
science and philosophy. On the other hand, 
mathematicians started to ask their own ques-
tions without any relation to other sciences, 
for instance the search of Pythagorean triples, 
that is, three natural numbers a, b and c satis-
fying a2+b2=c2. There is no immediate use of 
such knowledge apart from giving exercises to 
the students, which they can solve without a 
calculator.

As the mathematical knowledge and 
the number of mathematical texts grew, 
mathematics as a science was only accessi-
ble to a few specialist and highly educated 
people. At least, that’s what happened in An-
cient Greece, where the first Academies were 
founded. But the Greeks were conquered by 
the Romans who showed little esteem toward 
mathematics as one can still see in the cum-
bersome Roman number system. When 
the Roman Empire decayed and the church 
became powerful, science had to be in 
line with the official opinion and any dis-
covery, which contradicted the belief 
system, was forbidden and sometimes 
even punished. Pure mathematics is not                                                                                    

subjected to belief, so one can actually say that 
mathematics was among the sciences 
that were least affected during the dark 
Middle Ages within the territory of the former 
Western Roman Empire. Curiously it was the 
monks in the monasteries, i.e. the church, 
who continued to study mathematics. During 
these times, the Arabs, Chinese and Indians 
did better. Not without reason comes the 
word Algebra from an Arabic language. It is 
said that the Indians discovered the abstract 
concept of 0, in other words, the empty set. 
Without 0, mathematics could never have 
achieved its present potential. The Muslims 
brought this knowledge to Europe by trading 
and conquering, after all, the Spanish had 
plenty of contact with the Islamic world, al-
though it was not always fortunate.

As another curiosity, mathematics 
found its way to astronomy and cosmology 
through a discipline, which is not con-
sidered a science: astrology. The belief in 
astrology was so strong that kings and maharajas 
financed their own observatories so that an 
astronomer could predict the position of 
planets and all other moving celestial 
bodies. Every once in a while, the same person 
turned into an astrologer and told the ruler 
some nonsense about his fortune that nobody 
knew, not even the astrologer.

Ironically, mathematics disguised as 
physics started to refute (religious) beliefs. 
It may be doubted that Kepler didn’t know 
about the earth orbiting around the sun. 
Kepler concluded his laws of planetary 
motion by studying the trajectories of the 
planets and the sun using observations done by 
Tycho Brahe. One doesn’t observe perfect 
ellipses along the trajectories unless one 
considers also an elliptic orbit of the earth 
around the sun and eliminates the movement 
caused by the moving earth (epicycles). When 
Copernicus’ books were banned, he didn’t de-
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fend the truth, probably life had more value for 
him than science. Galilei had a shot but also 
preferred not to test torture. Though there was 
a mathematical physicist and philosopher who 
stood by his knowledge until his cruel end by 
being burnt for heresy: Giordano Bruno. Any 
reader may take a minute and think about it if 
(s)he would march in such a cruel death to de-
fend the truth. This certainly shows that the-
re were difficult times for science in Europe.

Who could challenge such a rigid be-
lief system? Pure mathematics couldn’t be-
cause there was no mathematics in the be-
lief system, so there was nothing in it to be 
challenged by mathematics. Quite the con-
trary, René Descartes in the 17th century and 
Kurt Gödel in the 20th century proved the 
existence of god. Both versions depend on the 
definition of god and Gödel’s proof on some 
axioms 4. Accepting a few axioms is something 
that all contemporary mathematicians have to 
do. If someone insists on not doing anything 
that involves a belief, mathematics doesn’t 
develop its full potential. In mathematical 
terms, the existence of god is as true as is 
mathematics, one only has to accept the de-
finitions and axioms, and to understand the 
proof. Gödel, who may be considered the 
greatest genius in logic of all times, never 
published his result because he feared the 
answer of the church and its devotees. 

Descartes is also known for creating 
analytical geometry by linking geometry and 
algebra. That is another source of power-
ful mathematics, combining different disci-
plines, which were developed separately. In 
fact, the only reason for dividing mathematics 
in different disciplines is for learning, but for 
applying mathematics, it is much better to 
have all disciplines in mind and to apply and 
combine whatever fits best. 

To answer the above question, the 
philosophers did it. For a second time, the 

philosophers had to be the vanguards of 
progress. Questions like “What is truth?” were 
difficult to prohibit and the answers often 
embarrassing for the church. Religion 
sought to mold the thinking of its adherents, 
but could not control all of them. So it was ba-
sically only a question of time when the church 
was challenged again. Fortunately, it was the 
humanists who promoted, together with their 
humanistic ideas, the interest in truth, science 
and progress. Even though the universe will 
never be completely understood, there is belief 
and there is evidence, and objective evidence 
can be crushing. On the other hand, there are 
things that nobody knows and everyone who 
says otherwise lies. For instance, Kurt Gö-
del’s incompleteness theorems  show, roughly 
speaking, that we will never know, nor be able 
to prove, that mathematics, the most basic of 
all sciences, is true. This raises the question 
if any science is true and the answer is, of 
course, no. Any model is only an approxima-
tion of what we call (and have to agree upon) 
“reality”. It will keep legions of scientists busy 
in the future to improve the models and to 
find new ones.

When the philosophers changed the 
rules of thinking, all sciences began to 
flourish and so did mathematics. Physics pro-
vided such an immense number of open ques-
tions that mathematics became principally 
mathematical physics, apart from special in-
terests like probability and statistics (which 
are good for gambling) and the omnipresent 
disciplines like algebra, number theory and 
combinatorics. Before publishing in journals be-
came popular, mathematicians exchanged 
letters about concrete and abstract problems 
and competed in solving them. Sometimes 
they even preferred to keep formulas secret 
so that they could win more easily in com-
petitions such as: Who can solve more cubic 
equations? Interestingly, a new level of ab-

4(Benzmüller and Woltzenlogel-Paleo 2014)             5 (Gödel 1931)
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straction entered the game because those were 
the most successful who reached the highest 
level of abstraction. Maybe it needed such a 
strange character as Gerolamo Cardano, a 
gambler who believed in astrology, to destroy 
a century-old belief system of the European 
mathematicians, namely that there are no 
negative numbers. Even more, he made 
use of the square root of negative numbers, 
coined “imaginary numbers” by René 
Descartes, although these numbers are as real 
as points on a vertical axis in a 2-dimensional 
plane. Grasping negative numbers means 
understanding that there is “less than 
nothing” or “another direction”. Adding a 
positive number to a negative number 
of equal amount yields nothing, which 
nowadays isn’t more difficult to understand 
than repaying a debt or walking back to the 
starting point. Combining “real” and 
“imaginary” numbers into complex 
numbers requires only to step up from 
1-dimensional thinking to 2-dimensional 
thinking, and creates the most powerful num-
ber system which only lacks the possibility 
to compare two numbers by their size. The 
use of the words “real” and “imaginary” re-
flects a conflict that faced the most brilliant 
mathematicians of this time: Is mathematics 
real or does it necessarily involve non-re-
al objects created only by the human mind? 
At present, mathematicians study spaces of 
any dimension, even of infinite dimension, 
without ever questioning if these spaces exist 
in the real world.

A genuine revolution in science, often 
left unmentioned in general history books, 
occurred in the late 17th century when 
Newton and Leibniz discovered 
differential calculus. Differential cal-
culus tells us that the values given at a certain 
moment of time, the local changes around us, 
together with the changes at the smallest possible 

(i.e. infinitesimal) time steps, determine 
completely the future of a dynamical system. 
Mathematically it says that we can recon-
struct a function from the knowledge of 
its changes by integration, which is the in-
verse process of differentiation. In a con-
temporary language, it amounts to solving 
differential equations. Leibniz developed 
differential calculus in a notation that we still 
use today. Newton used his discovery to for-
mulate the laws of mechanics, defining in that 
way what we call “force”, and applied his theory 
to explain the trajectories of falling apples, 
cannon balls, and the planets around the sun. 

It is the nature of our existence that we 
can measure “locally” the observables around 
us, and thus determine its changes, and that 
we postulate that the laws of nature remain 
the same under equal conditions. For these 
reasons, differential equations became the 
predominant equations of physics. Their use 
in predicting the future - one of mankind’s 
greatest longings - was so successful that, 
more than a century later, physicists debated 
about the so-called “Laplace’s demon”. That 
is, if all forces, all particle positions and their 
momentums at a certain moment are known 
(to a demon), then the whole future of the 
universe will be determined (be known by the 
demon). Obviously, this rules out the existen-
ce of free will. This purely mechanical view 
of the universe ignores that our brain activi-
ty is based on thermodynamic and electrod-
ynamic processes, and that the information 
processing in our brain relies on patterns, not 
on exact physical states. The latter, for instan-
ce, makes us see a smiling face when looking 
at a circle with two dots and a small arc, and 
the former creates a conflict with Boltzmann’s 
second law of thermodynamics, which gives 
time a direction. 

The simultaneous discovery of differen-
tial calculus exposed that scientific progress is 
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not always driven by the quest of knowledge 
alone, but also by pride, fame and rivalry. Al-
ready Cardano disputed with Niccolò Fonta-
na Tartaglia about who has to be credited for 
finding the solution of the cubic equation. In 
the matter of differential calculus, Leibniz was 
accused of having plagiarized from Newton. 
The Royal Society of London installed a com-
mittee to investigate the case. The committee 
ruled that - what a surprise - Newton, who 
coincidentally was the president of the Royal 
Society at that time, had first invented calcu-
lus. Even geniuses like Newton are humans 
after all.

In the following decades, the Bernoulli 
family dominated the research in mathema-
tics and physics, perhaps the most influential 
family in science. They were excellent masters 
in solving very specific problems analytically, 
often challenging each other. Such calculation 
skills are hard to find nowadays since it is now 
faster and easier to get an approximate solu-
tion by a computer. Geniuses and humans like 
Newton, their enormous output of results was 
fueled by rivalry and jealousy, even among 
family members.

From the Bernoulli family descended 
the greatest mathematician of the 18th cen-
tury, not as a family member but as a stu-
dent: Leonard Euler. He made groundbrea-
king contributions to almost all branches of 
contemporary mathematics at that time. For 
instances, with his famous problem to find a 
way in Königsberg which crosses each of its 
seven bridges only once, he initiated graph 
theory, and with the observation of the inva-
riance of the number χ := #vertices − #edges + 
#faces for Platonic solids, he started the study 
of topological invariants even before the 
concept of a topological space had been 
defined. His analytical reasoning for problem 
solving established the fundamentals of 
modern mathematics. Much of his mathe-

matical language is still in use today and, as 
known from psychology and philosophy, 
language influences our thinking. “Die Gei-
sel”, female in German, is called “el rehén” 
in Spanish, a male word. This will influence 
how German and Spanish people think about 
a hostage even if they describe the meaning 
with the same words.

Euler was the most prolific mathematician 
of his time, no serious disputes with his fellow 
mathematicians are known and his dedication 
to mathematics was so strong that not even lo-
sing his eyesight lowered his productivity. It is 
reassuring to conclude that the most influen-
tial mathematicians are not necessarily driven 
by rivalry and jealousy, but a genuine interest 
in the progress of mathematics.

Euler is credited for the potentially most 
beautiful formula in mathematics: 

This formula contains two 
indispensable transcendental constants: 
the number π, which is ubiquitous for 
describing anything related to circles, 
spheres and rotations, and Euler’s number e, the 
natural base for exponential functions. The 
effects of exponential growth can be seen 
for instance in the spread of a virus at the 
beginning of a pandemic, and it also explains 
why evolution works and can be so diverse. 
Evolution is not just “survival of the fittest”, it 
is first and foremost diversity in huge num-
bers before evolutionary pressure drives the 
average in one or another of the countless di-
rections. To put it plainly, human intelligence 
is a result of exponential growth. 

However, Euler’s formula has a small im-
perfection. Unfortunately, Euler denoted by 
π the ratio of a circle’s circumference to its 
diameter, but a circle is conceptually better 
characterized by choosing the center and a 
single point on its circumference, so the ra-
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dius is a more natural parameter. In particu-
lar, a full rotation corresponds Π := 2π. With 
Π as the characteristic number of a circle, 
Euler’s formula becomes 

           
Now, apart from the famous transcenden-

tal constants, the formula contains the basic 
numbers             and also 2, thus all we need 
for our most complete number system. With 2 
as a base, we can express any real number as a 
combination of 0s and 1s, and adding another 
direction by i=√(-1), we obtain the powerful 
complex number system, where any polyno-
mial equation has a solution and no point of 
the plane is missing. It seems that mathemtics 
is a very conservative science, we will never 
see in our life the practical redefinition of

Π : = 2π = one full rotation = one period 
of sine and cosine, 

and we will never teach our kids in kinder-
garten the simple binary number system al-        
though all our computers use it. Humans 
don’t like changes of what they got used to. 

There is one thing that Euler seemed to
have understood thoroughly, but never 
defined precisely: infinity. The Greeks 
discussed already the infinite large, the 
infinite small was used by Newton and 
Leibniz and their successors (for instance 
by Euler), but the rigorous handling of the 
infinite started with Cauchy, a trained engi-
neer with a strong interest in mathematics and 
the founder of complex analysis. There are so 
many theorems named after Cauchy that no 
graduated math student will ever forget his 
name. Undergraduate students become so 
familiar with Cauchy’s definition of the infi-
nite small that, when suddenly woken up at 
night and asked “How big is epsilon?”, they 
will almost certainly answer “It’s small!” (it 

can be smaller than any positive real number). 
Cauchy may have produced even more theo-
rems if he wouldn’t have had such strong con-
servative political opinions that complicated 
his life. Sometimes science is an obstacle for 
(despotic) politics, sometimes political beliefs 
are an obstacle for science.

  
Without the infinite, mathematics would 

be a science of rules and logic but without 
tools. With the correct understanding of the 
infinite, the infinitely small and the infinite-
ly large, progress in mathematics exploded in 
the second half of the 19th century, again with 
an enormous input from physics. Old pro-
blems like Laplace’s, Poisson’s, wave and heat 
equations could be studied in a new light and 
on a solid foundation by the use of Fourier’s 
trigonometric series and integral transforma-
tions, later called harmonic analysis. Analysis 
separated from algebra, and new areas like to-
pology and set theory evolved at a fast pace. 
Interestingly, until the 20th century, mathe-
maticians were not able to state properly what 
the notion set means. As the mathematical 
knowledge grew, specialization and division 
into different disciplines increased. I will re-
turn to this later. 

Much of the rigorous groundbreaking 
work was done in the first half of the 19th 
century by Carl Friedrich Gauss, who may be 
considered as the greatest mathematician of 
all time, although he had an obscure spartan 
writing and teaching style that was difficult 
to understand and much hated by students. 
Not always is the best scientist also the best
teacher. Famous already during lifetime, his
pursuit of knowledge was not 
driven by fame  or rivalry but the desire of 
understanding a (mathematical) problem 
deeply and completely. An indication of 
this is that Gauss left many pioneering 
discoveries unpublished because he 
considered them incomplete although the 
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latter led to priority disputes.
One of these disputes concerned non-Eu-

clidean geometry. Gauss claimed to have 
discovered non-Euclidean geometry be-
fore Lobachevsky6 and Bolyai7 but never 
published any result in his lifetime. Maybe he 
considered his treatise incomplete, maybe he 
feared the reaction of his colleagues because the 
discovery of non-Euclidean geometry 
challenged the common perception that Eu-
clidean space is the only valid geometry. It 
also questioned the necessity and validity of 
axioms (e.g. Euclid’s parallel postulate), and 
raised concerns that human perception leads 
to unnecessary postulates or that missing 
postulates lead to mathematical theories that 
cannot be considered true. Non-Euclidean 
geometries are intimately related to 
curvature, an intrinsic measure of how a 
spacebends and which is independent from 
an embedding into Euclidean space. Gauss 
described the curvature of surfaces in his fa-
mous Theorema egregium8, which implies 
for instance that one cannot draw a map of 
the earth on a sheet of paper without distor-
tion. The Gauss-Bonnet theorem, which rela-
tes the integral of Gaussian curvature to the 
Euler characteristic χ defined above, can be 
considered as a precursor of one of the most 
celebrated theorems of the 20th century: the 
Atiyah-Singer index theorem9. Gauss’ student 
Bernhard Riemann extended the notion of in-
trinsic curvature to spaces of any dimension10 

and established in this way the geometric 
foundations of Einstein’s general relativity11. 
From the simple consideration that it is more 
likely that the universe is finite, it becomes 
more natural to view space-time as curved 
and not as Euclidean.

Another surprise in those times was the 
most famous “no-go theorem” in math-
ematics, arguably one of most difficult theo-
rems that undergraduates have to learn and 

seemingly too difficult for some of the best 
mathematicians in the first half of the 19th 
century because it took more than a decade 
to acknowledge that Évariste Galois solved a 
mathematical puzzle that had defied a solu-
tion for centuries 12. Almost 300 years before, 
Cardano published solutions of polynomial 
equations of degree 3 and 4 (lower degrees 
are easier). After many failed attempts, doubts 
emerged that there exists a formula for equa-
tions of degree 5 and higher, involving only 
algebraic operations and (higher-order) roots. 
It should be mentioned that Niels Henrik 
Abel 13 proved the non-existence of a general 
formula 6 years before Galois submitted his 
work, but Galois created a whole new theory 
that allowed to decide when such a formu-
la exists. Both were geniuses, because both 
solved hard problems at an early age.
Sadly, both have in common that they died 
very young in their twenties. It is difficult to 
imagine what these brilliant minds would 
have contributed to mathematics in a nor-
mal lifespan. Abel died poor from tubercu-
losis working hard until his end. Galois had 
a rebellious mind, which often brought him 
into trouble and ultimately into a fatal duel, 
presumably because of a love affair. Foresha-
dowing his fate, he used the last night to write 
letters that preserved his mathematical legacy 
but not his life. Whatever his thoughts might 
have been in those hours, maybe it needed 
such a rebellious mind to think differently 
than the renowned mathematicians of that 
time.

Remarkably, Galois and Abel initiated by 
their work the breakthrough of a mathe-mati-
cal structure that has always and nearly unno-
ticed been around: group theory. Groups are 
the simplest structures where two elements 
can be combined in an asso- ciative way to a 
third one and where equations like a o x=b can 
be solved for unknown x. For being so simple 

6(Lobachevsky 1837)               7 (Bolyai 1832)                8 (Gauss 1828)           9 (Atiyah and Singer 1968)           10 (Riemann 1868)              11 (Einstein 1916) 
   12 (Galois 1846)                       13 (Abel 1824)
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and allowing to solve equations, groups are 
used nowadays to classify more complicated 
objects like manifolds (spheres, tori, projec-
tive spaces, etc.). Groups and symmetries are 
essentially the same thing, groups always act 
as symmetries (e.g. on itself) and a (com-
plete) set of symmetry transformations 
always forms a group. Symmetries were alre-
ady used by our ancestors before becoming 
humans, a perfectly symmetric fruit looks 
more beautiful than an asymmetric one and 
sends the correct message of having had be-
tter growing conditions and thus of being 
more nutritious. In the same vein, a mirror-
symmetric mating partner looks healthier 
than an asymmetric one. What we call the 
beauty of a flower is a competition of attracting 
insects for reproduction, even such primitive 
brains like the one of an insect can perceive 
symmetry. The great mathematical physicist 
Hermann Weyl went so far to state that beau-
ty is symmetry14. Whereas symmetry always 
signifies beauty, psychologists found out that 
a slight deviation from perfection attracts 
more attention, for instance in mating habits. 
It is the variation of genes that pushes evolu-
tion. Nevertheless, I would go so far to state 
that groups are the most beautiful objects in 
mathematics. Groups are as beautiful as a 
perfect circle (the group U(1)), as a perfectly 
round 3-sphere if you can imagine a sphere in 
4 dimensions (the group SU(2)), or a perfect 
2-sphere, which is not a group but on which 
acts the group O(3) of orthogonal isometries 
of        (it is a homogeneous space). 

Groups are today a principal tool in 
mathematics. They allow to make calcula-
tions only in a single point (for instance the 
Gauss curvature of the 2-sphere) and then 
to know what happens at any other place by 
moving the point around the space using an 
(isometric) group action. It is totally aston-
ishing that their systematic study started less 

than 200 years ago. Galois used permutation 
groups to study the symmetries of the roots of 
polynomials. Felix Klein was so exited about 
groups that he started the Erlangen program 
in 1872, a program of classifying geome-
tries by group actions. Sophus Lie combined 
group theory and differential calculus to eli-
minate unnecessary parameters in differential 
equations, much in the same way as Kepler’s 
laws are used to reduce the parameter space 
of planetary orbits, and thereby created the 
vast field of Lie groups and Lie algebras. The 
classifications of semi-simple complex Lie al-
gebras by Élie Cartan15 in his PhD thesis, and 
of all finite simple groups by many contribu-
tors, were major achievements in the last 130 
years. Here, “simple” means “building blocks” 
of more complicated structures. That’s the 
way mathematicians think, once they have 
discovered an important structure, they want 
to know all possible objects (up to equivalen-
ce) and that will keep them busy for centuries. 
As alluded above, understanding groups is a 
good starting point for such programs.

In physics, the standard model is based on 
the Lie groups U(1), SU(2) and SU(3). Mathe-
maticians call this model Yang-Mills theory 
and can win a one million dollar prize from 
Clay Institute of Mathematics 16 if they prove 
its last mysteries like the mass gap. Einstein’s 
special relativity 17 is essentially the theory 
of isometrical group actions on Minkowski 
space. This was already known to Lorentz, 
who observed that Maxwell’s equations of 
electrodynamics are invariant under the-
se transformations, but it is to due Einstein’s 
genius to draw the right conclusions like the 
twin paradox, which isn’t a paradox at all, it 
just violates human’s perception of an abso-
lute time. The twin paradox allows particles 
to reach our planet, which have a lifetime less 
than the time that light needs to travel from 
the sun to the earth. 

14(Weyl 1952)                   15(Cartan 1894                        16 ([3])                      17(Einstein, Zur Elektrodynamik bewegter Körper 1905)
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With his unique thinking and the shat-
tering of human’s perception of an absolute 
time, Einstein became the first pop icon of 
science. Young folks scribbled the formula on 
city walls, possibly without understanding it 
or because of the joy of understanding it. In-
deed, understanding something awesome can 
be quite exiting. A paparazzi photo of him 
with his tongue sticking out went viral befo-
re social media existed. Legends were cons-
tructed around him like the one that he failed 
mathematics at high school. Probably a 
German saw his school certificate without 
knowing that the Swiss used an opposite 
number system compared to Germany, where 
the lowest number 1 corresponds to the best 
mark. These details don’t matter if ordinary 
people can find delight in failures of pop stars 
and reassure themselves that geniuses are just 
like them, which they are not.

Having reached Einstein, it would be 
much too much to mention all geniuses of 
mathematics and mathematical physics in 
this exposition, so I will have to restrict my-
self to just a few ones. First of all, it is rather 
unavoidable to mention two senior contem-
poraries of Einstein: Henri Poincaré and Da-
vid Hilbert. What they have in common is 
that both can be considered the last universal 
geniuses of mathematics in the sense that they 
contributed profoundly to almost all the im-
portant mathematical disciplines of their time 
and established new ones. From this perspec-
tive, they were on an equal footing with Euler 
and Gauss. After that, mathematics became 
too diverse to be grasped by a single human 
mind.

Poincaré got famous for many discoveries, 
and also for a problem that he didn’t solve but 
only conjectured, the famous Poincaré conjec-
ture. Roughly speaking, it says that the usual 
topological invariants (“number of holes”) are 
enough to characterize a sphere, where the 

3-sphere resisted a proof for a long time. For 
mathematicians, it is a very important ques-
tion because if it had a negative answer, they 
would have to look for more topological in-
variants making the classification of topologi-
cal spaces more difficult. The Clay Institute of 
Mathematics considered this problem so im-
portant that they included it into their seven 
Millennium Prize Problems and offered one 
million dollars for a solution.

In physics, Poincaré discovered that the 
Lorentz transformations form a group that 
leaves Maxwell’s equations of classical electro-
magnetism covariant, i.e., they transform in 
the right way. (Having mentioned the “most 
beautiful equation of mathematics”, I vote for 
calling Maxwell’s equations the most beautiful 
equations of physics.) Thus, Poincaré had all 
pieces of special relativity together but there 
was one piece too much rather than missing, 
he couldn’t abandon his belief in an aether 
theory, that is, a space-filling substance for the 
transmission of light. It needed a radical mind 
like Einstein’s to draw the right conclusions. 
In this example we can see again how belief 
disturbs the progress of science, even more if 
the believer is a well-respected scientist. Being 
an intuitionist, Poincaré was also a master of 
“as easily seen”, a bad habit of mathematicians 
to cut lengthy and possibly difficult proofs 
down by disparaging the reader’s knowledge: 
“Can’t you see? It’s easy!” For math students, it 
may be the most annoying phrase. 

These remarks do not downgrade Poin-
caré’s ethical standards. He participated in 
a competition for a prize awarded by the 
Swedish king about the stability of the plane-
tary system. Poincaré reduced the problem 
to a three-body problem with one of small 
mass 18. Yet his submission was too difficult 
to understand even for the jury although no-
body had doubts about the quality of Poin-
caré’s work. Poincaré was awarded the prize 

18(Poincaré 1890)
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but when an editor asked some critical ques-
tions, he found a mistake in his treatise, which 
flipped the result from stability to a possible 
instability. He was asked to correct the error 
and to buy back all published copies, which 
he did, although it was quite a bit more ex-
pensive than the prize money. So truth, or 
his reputation, mattered more to him than 
money. By correcting his error, he initiated 
a new mathematical discipline called chaos 
theory, commonly described as the “butterfly 
effect”. It may be noted that even highly quali-
fied referees cannot guarantee the correctness 
of a difficult paper. Let’s hope that our main 
theorems don’t contain mistakes!

Besides, Poincaré’s work casts doubts on 
the Laplace demon. What happens if the de-
mon is slightly wrong about the initial condi-
tions? Then the butterfly effect tells us that the 
nonlinearity of the problem can cause huge 
changes in the outcome, which makes the 
prediction of the future an extremely difficult 
task.

Pretty much in the same way as Poinca-
ré’s work relates to Einstein’s special relativ-
ity, Hilbert’s work relates to Einstein’s general 
relativity. Almost simultaneously with Eins-
tein, he proposed an action principle leading 
to curved space-time 19. Being a role model of 
a scientist, Hilbert never engaged in a priority 
dispute and voluntarily granted all credits for 
the discovery of general relativity to Einstein. 
One might speculate that Hilbert was famous 
enough and didn’t need more fame, but so 
was Newton when he disputed with Leibniz. 

There is a huge difference between Poinca-
ré’s and Hilbert’s style of doing mathematics. 
Poincaré focused on insights and comprehen-
sion in an intuitive way. In his preference of 
intuition over logic, he appears to be rather a 
physicist than a mathematician. Hilbert, on 
the other hand, pursued an axiomatization 
and rigorous foundation of mathematics on 

the basis of logic. A simple paradox, known as 
Russell’s paradox, plunged mathematics into 
crisis.The paradox asks for the set of all sets 
that don’t contain themselves and showed that 
a naïve understanding of sets is not enough 
for mathematics. To solve the paradox, one 
needs a rigorous definition of the concept set. 
Some mathematicians like Brouwer decided 
not to use concepts that cannot be construc-
ted in a proper way, and that a mathematical 
statement is true as long as it doesn’t create a 
contradiction. Therefore, nothing that creates 
a contradiction should be constructed, like 
the set of all sets that don’t contain themselves. 

Hilbert’s approach was to set up a complete 
system of axioms and rules, which is free of 
contradictions and from which all results in 
mathematics can be deduced. Gödel’s incom-
pleteness theorem mentioned above showed 
that Hilbert’s goal can never be achieved. 
Nowadays most mathematicians accept Zer-
melo–Fraenkel set theory with the axiom of 
choice. Nevertheless, Hilbert’s attempt had 
such an enormous impact that his style pre-
vails in modern mathematics (and Poincaré’s 
style still in physics).

Hilbert was a genius with such an aston- 
ishing comprehension of mathematics that 
he shaped the mathematics of the last cen-
tury with a single talk at the International 
Congress of Mathematicians in 1900 and the 
posterior publication about it 20. Hilbert pro-
posed 23 problems covering a wide range of 
topics in which he clearly prioritized his ax-
iomatic approach. Some of these problems 
are still unresolved. One of these problems, 
the Riemann hypothesis, even made it into 
the seven Millennium Prize Problems with a 
prize money of one million dollars. Never 
again has a single mathematician had such an 
exhaustive vision about mathematics.

A genius with an understanding of a 
wide range of mathematical and physical 

19(Hilbert 1915)                      20(Hilbert 1900)   
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disciplines (almost all, but mathematics deve-
loped during his lifetime in too many direc-
tions to be followed by a single human mind 
at top level) was John von Neumann. His 
impact on mathematics is comparable with 
Poincaré and Hilbert in terms of creating and 
boosting new theories. John von Neumann 
participated in two scientific revolutions that 
haven’t been mentioned yet: statistical phy-
sics and quantum mechanics, both developed 
around the turn of the twentieth century. John 
von Neumann contributed substantially to 
the mathematical foundations of these theo-
ries. For both theories, he used a reformula-
tion in terms of operators on a Hilbert space. 
As the name suggests, Hilbert started to study 
these objects and even used the name spec-
trum for a set of (real) complex numbers that 
characterize (self-adjoint) operators on a 
Hilbert space. It is not known if Hilbert was 
aware that these numbers would later become 
identified with the outcome of possible physi-
cal measurements like the spectrum of light.

Statistical mechanics, which explains 
the existence of irreversible processes, was 
developed by Ludwig Boltzmann 21. It 
roughly says that it is not impossible that a 
system returns to its initial state but usually 
the probability is extremely small. For this, 
Boltzmann introduced the concept of entropy 
that “measures” the disorder, and isolated sys-
tems tend to increase their disorder. To put it 
simply, it is more likely to find the system in a 
state that is more likely. Statistical mechanics 
also provides a mathematical definition of 
temperature, which is quite different from just 
feeling cold or hot; and a direction of time, it 
is the direction in which the entropy increa-
ses, and statistically the entropy “always” in-
creases. Of course, the entropy can decrease 
locally, which means that the order increases, 
otherwise our brain could not exist, but it is at 
the cost of global disorder, that’s why we need 

to supply our brain with energy to keep it 
functioning. Small particles like electrons and 
protons prefer order, an electron enjoys being 
captured by a proton. It is a more stable state 
of lower energy and stable states last longer. 
Provided that certain states are longer stable 
at the cost of an increase in total entropy, it 
will be even more favorable for the second 
law of thermodynamics. As long as specific 
organic compounds, cells, organisms, brains, 
etc. owe their existence to an energy flux that 
increases the total entropy, there is no contra-
diction to the second lawof thermodynamics. 
For the existence of life, it needs a driving for-
ce, the increase of stable states by replication, 
again by an energy exchange that rises the to-
tal entropy. Replication, or let’s say reproduc-
tion, summarizes pretty well the purpose of 
life. If you need more purposes, you have to 
give your life some more.

The existence of (intelligent) life is no 
contradiction to the second law of thermod-
ynamics, it started with a fluctuation within 
an inconceivable huge number of possibi-
lities and evolved as a self-reinforcing pro-
cess. The mathematics to deal with such huge 
numbers of possibilities, with chaos, non-
linearity, emergent structures and internal 
self-reinforcing processes, are studied under 
the name complex systems. It is still an emer-
gent discipline and a promising research area 
for winning a Nobel Prize since the evolution 
of life, the global economy and the behavior of 
societies can be modeled by complex systems. 
Life is not a mystery, the mathematics behind 
life is the mystery.

Statistical mechanics was a true revolution. 
Scientists of Boltzmann’s era weren’t even sure 
whether atoms existed. After the success of 
Newton’s mechanics, physicists began to be-
lieve in Newton’s mechanics like in a dogma. 
However, it is invariant under time reversal, 
whereas Boltzmann showed the existence of 

21(Boltzmann 1877)
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a direction of time. The problem seems 
not to have been that this was too difficult 
to understand, the dilemma was the obvious 
fact that Boltzmann’s law couldn’t be deduced 
from Newton’s mechanics alone, so Newton’s 
mechanics could not be considered complete. 
This provoked a major crisis in physics, much 
worse than the crisis in mathematics when lo-
gicians understood that mathematics needs to 
be founded on axioms but can never be pro-
ven to be true. For the understanding  of  the 
physical world, the need of mathematical

 axioms didn’t mean much as long as the mo-
dels work (for instance quantum field theory 
is still not founded on rigorous mathematics), 
but Boltzmann showed that mankind was far 
from understanding everything because if 
there is one more law that nobody knew, then 
nobody knows how many laws are missing. 
Even Nobel Prize winner Ostwald (in chemis-
try!) refused to accept the theory of atoms. 
Unfortunately the criticism from some collea-
gues may have contributed to Boltz- mann’s 
deteriorating mental health and to his tragic 
death, he did not live to see the victory of his 
ideas. Statistically, geniuses have mental heal-
th issues as often as ordinary people unless 
otherwise proven.

John von Neumann gave a novel descrip-
tion of entropy by combining it with the other 
mentioned scientific revolution: quantum 
mechanics. Before quantum mechanics, New-
ton’s mechanics described the dynamics of 
massive particles and Maxwell’s equation des-
cribed electromagnetic waves. In particular, 
there was an obvious difference between par-
ticles and waves. However, the newly disco-
vered photoelectric effect, i.e. the emission of 
electrons caused by light of certain frequen-
cies, could not be explained by a wave theory. 
As Boltzmann suggested years before, Max 
Planck hypothesized that energy states can be 
discrete and resolved in that way the diver-

gence problem in computing the spectrum 
of black-body radiation 22. Einstein, in his 
unique way, postulated that the quantization 
of all electromagnetic radiation is not just a 
mere computational tool but an actual fact of 
nature, i.e. light travels in particle-like packa-
ges, and explained thus successfully the pho-
toelectric effect 23. For this discovery, Einstein 
was awarded the Nobel Prize in Physics – and 
not for his revolutionary relativity theory. An-
yway, he didn’t need two Nobel Prizes to be 
remembered as a genius.

Louis de Broglie picked up the idea of wa-
ve-particle duality in his PhD thesis, postula-
ting that all particles have wave-like proper-
ties 24. His hypothesis was later confirmed in 
diffraction experiments with electrons. For his 
PhD thesis, de Broglie won the Nobel Prize.

There aren’t many PhD theses worth a No-
bel Prize, and I am afraid that some univer-
sities would have rejected such a daring the-
sis as nonsense. For physicists, it was quite a 
challenging hypothesis that matter behaves as 
particles and waves, but for mathematicians, 
it should be of less concern, particles and 
waves are just two mathematical models, i.e. 
theoretical approximations, for the same ob-
jects. Anyway, if some student strives to win a 
Nobel Prize for her/his PhD thesis, (s)he may 
try to find a unifying picture for the so-called 
wave-particle duality. My naïve suggestion 
would be to study sections of vector bundles.

These sections behave like wave function, 
may look very harmonic on nice spaces, come 
with a discrete set of topological (quantum) 
numbers, may have a singularity (a kind of 
vortex) at a single point (that could be blown 
up to a manifold), and the idea fits into a pre-
viously mentioned one million dollar prize 
problem from the Clay Institute of Mathema-
tics, so it is actually not a completely new pro-
posal. Of course, to win the Nobel Prize, (s)
he has to make verifiable predictions that are   

 22 (Planck 1901)                      23(Einstein, Erzeugung und Verwandlung des Lichtes 1905)  
   24(de Broglie 1925)

                 
25(Schrödinger 1926)
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and are studying its properties and solu-
tions until now. In 1925, the physicist Wer-
ner Heisenberg, who was rudely rejected to 
study mathematics at the University of Mu-
nich for his interest in mathematical physics, 
spent some time in scientific isolation at an 
island in the North Sea to recover from an 
allergic rhinitis. Having had time to think 
about physics, he tried to find a formula to                                                  
calculate the spectral lines of hydrogen. To ma 
tch observable results, he departed from a new 
approach, considering differences (instead of 
absolute values) of frequencies and intensities 
of spectral lines. Summing these differences 
up in a certain way, he obtained a correct re-
sult. When he presented his formula to Max 
Born (who had studied mathematics under 
Hilbert and Klein), Born realized that this 
certain way of summation was nothing else 
than matrix multiplication. Together (with 
Pascual Jordan) they formulated the so-called 
matrix mechanics 26 in contrast to Schrödin-
ger’s wave mechanics. These are apparent-
ly quite different theories. In Schrödinger’s 
theory, the wave functions evolve with time; 
in Heisenberg’s theory, the matrix operators 
depend on time. For the sake of completeness, 
all scientists mentioned in this paragraph 
and not written in parenthesis won the Nobel 
Prize in Physics.

The fact that matrices usually don’t com-
mute had a surprising implication: the 
corresponding observables cannot be mea- 
sured (= known) simultaneously with arbitra-
rily high accuracy. This is called Heisenberg’s 
uncertainty principle. Heisenberg’s uncer-
tainty principle for position and momentum 
together with the probability interpretation 
of Schrödinger’s wave mechanics were the 
final blow for the Laplace demon, although 
Einstein wanted to save the demon with a
hidden variable theory. It is interesting to 
note that Einstein, who revolutionized phy-

sics and
 

shattered preconceived notions by 
radical interpretations of the physical reality, 
became a victim of his own beliefs and objec-
ted the  probability interpretation of quantum 
mechanics without proper evidence (he only 
presented his famous thought experiments). 
A scientist, no matter how successful, should 
never stick to personal beliefs, but uncon-
sciously will always do so.

It’s curious, I don’t know anybody who be-
lieves that Riemann’s hypothesis is wrong, and 
I don’t know anybody who states that it is a 
fact.

The demise of determinism opens the door 
to free will. But what is free will? If you think 
that either there exists free will or it doesn’t, 
then you are probably mistaken. It is not that 
simple, at least if you believe in causality. Did 
you ever ask yourself if a computer with a 
couple of simple programs running on it has 
free will? If you did, then you probably have 
answered yourself “no”, it has no free will, like 
any other machine running on pre-installed 
programs. The most primitive life-forms were 
programmed by Mother Nature to do the 
“right” thing – Escape! From the enemy. Eat! 
What is nourishing. Sleep! In a safe place. – 
because Mother Nature punished the opposi-
te behavior (the “wrong” thing) with extinc-
tion, that’s natural selection. These life-forms 
have only instincts because they were pro-
grammed to do always the same thing in a 
specific situation.

But what happened, when there were two 
stimuli at the same time? If both responses at 
the same time aren’t possible, there is a need 
to decide. At first, the chance to do one or 
the other action may be exactly 50:50, i.e. 0.5 
in terms of a probability measure. In other 
words, to make randomly a decision between 
two choices with the same probability requi-
res exactly 0 free will. If you absolutely don’t 
care about coffee or tea, no matter what you

26(Heisenberg et al. 1926)
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had last time or smell first, your decision 
doesn’t need any free will. You may even have 
made a decision before you know it (Libet 
experiment). However if you absolutely don’t 
care about toxic and non-toxic berries, then 
Mother Nature may punish you with extinc-
tion. To increase the chances for the survivors 
to survive, Mother Nature will have to store 
information in them, for instance by bitter 
and sweet taste (fear/pleasure, pain/joy, etc.), 
so that toxic berries get rejected by instinct. 
If you nevertheless eat the bitter berries con-
trary to your instinct and without a need, for 
instance to test if they are toxic, then you exe-
cute free will, very likely not total free will be-
cause there is causality, and you probably had 
a motivation (i.e. expected benefit) to do so. 
Instinct evolved step by step by evolution, and 
so did its opposite: “free” will together with 
consciousness. Before the emergence cons-
cious-ness, emotions ruled our behavior, and 
for some people, they still do. 

This raises the question of what is cons-
ciousness. As our brain works on the basis 
of electromagnetic, thermodynamical and 
chemical processes, I have already answered 
the question. Mathematically, consciousness 
is nothing else then information processing 
of statistical and self-organizing complex 
systems together with feedback and control. 
To keep a long story short, the mathematical 
foundations for a model approximating cons-
ciousness do already exist, but they are too 
complex to give an answer now, there will be a 
lot of research about it in the future. 

To each decision, there can be assigned 
a number between -1 and 1 that represents 
the amount of free will. It is roughly given by 
1−2p, where p denotes the probability to do 
it by instinct. So -1 means pure instinct like 
pulling the hand away when touching bur-
ning coal, and 0 free will means a completely 
random decision between two options with 

the same probability. A free will of 1 is diffi-
cult to achieve because there is causality and 
there are motivations based on previous experi-
ences, involuntary emotions or learnt in-
stincts. Being voluntarily crucified to live up 
to one’s own words regardless of the torture 
that accompanies the death by crucifixion is 
pretty close to a free will of 1, as is starving 
oneself nearly to death on the quest of truth.

However, how we experience free will is a 
different question. Now you may ask yourself: 
Where does “free” will come from? May I ask 
you a different question? Did you ever read 
this text before, I mean exactly the same text 
written by another person? Mind can create 
new thoughts by combining available infor-
mation in novel ways. The more information 
is available and linked in the brain, the more 
combi-nations are possible, that’s why nobody 
can become a genius without learning. Thou-
ghts allow decision-making based on expe-
riences and knowledge, and to make a deci-
sion opposite to your instinct, you must have 
had thought about it. Furthermore, it requires 
an understanding of past, present, future and 
causality. “If it rains tomorrow, I will stay at 
home.” If = a conditional clause, it rains = a 
possible future event, stay at home = a deci-
sion based on emotions (I don’t like rain) or 
past experiences (it will be too cold for swim-
ming). “Free” will manifests in decisions made 
in the past for events that occur in the future. 
Immediate spontaneous reactions are not free 
will, they are called reflexes.

Let’s return to quantum mechanics. Ha-
ving two reasonably correct theories for the 
same phenomena – Schrödinger’s partial di-
fferential equations and Heisenberg’s matrix 
mechanics – can have two causes. Either both 
are different approximations of a not yet com-
pletely understood physical principle, or both 
are the same theory in different languages. 
That’s where John von Neumann entered the 
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That’s where John von Neumann ente-
red the game. He used a theorem by Stone 
and proved the uniqueness of Schrödinger’s 
operators 27, which shows that Heisenberg’s 
matrices and Schrödinger’s operators are es-
sentially the same objects in different descrip-
tions. What I find astonishing is not the proof, 
what astonishes me is that he had the insight 
to prove that two utterly different looking 
theories are the same. 

When von Neumann gave the correct ma-
thematical description of Heisenberg’s ma-
trices as operators on a Hilbert space, the 
physicists got a little scared because some 
(invented) matrices are not defined on any 
state of a Hilbert space. Proving the requi-
red condition of self-adjointness can be a di-
fficult task that physicists gladly leave to the 
mathematicians. John von Neumann laid the 
mathematical foundations of quantum me-
chanics in a book of the same name 28. It is 
said that, when he wanted to publish a long 
article in a Springer journal, the editor feared 
a loss of profit since the space could be used 
for several other papers, so von Neumann 
had to promise to write a book for the same 
publisher. If the story is true, the editor was a 
clever businessman because the book Mathe-
matical Foundations of Quantum Mechanics 
became a standard reference for functional 
analysis, quantum mechanics and quantum 
thermodynamics.

During the horrible Nazi period, von Neu-
mann’s family emigrated to the United States, 
as many European scientists of Jewish her-
itage or with opposite political views did, 
for instance Albert Einstein. So many scien-
tists left Europe that, when Hilbert was as-
ked if the Mathematical Institute in Göttin-
gen had suffered by the departure of the Jews 
and their friends, he replied: “It doesn’t exist 
anymore.” For the United States, it was the be-
ginning of a time of flourishing in science and 

technology by attracting the smartest brains 
(which the US still do).

When it became clear that nuclear fis-
sion could be used to construct powerful 
bombs, a letter signed by the pacifist Albert 
Einstein was sent to the US president that 
warned against a possible German atomic 
bomb and indirectly suggested to build one 
before the Germans did. As a response, the 
US government launched the top-secret Man-
hattan Project aimed at developing the first 
nuclear weapon. Among the mathematical 
experts joining the project were Stanislaw 
Ulam and John von Neumann. There may 
be many reasons for joining a project deve-
loping a weapon of mass destruction, for in-
stance patriotism, money, fear of the enemy, 
and also scientific curiosity. Whatever the re-
ason might be, it raises the ethical question 
whether scientists should participate in mi-
litary projects aimed at killing people. Being 
one of the founders of mathematical game 
theory, von Neumann had his own theory 
about peace. If two or more players can never 
win but definitely destroy the other, no one 
will ever dare to start the game. He has been 
right so far, but he didn’t consider the psycho-
logy of a mad “Führer” who starts a war that 
he cannot win, or a narcissistic leader who is 
a sore loser and prefers total destruction of 
a proclaimed enemy over giving up power. 
Please check the psychology of the candida-
tes before voting, they may ignore all human 
knowledge gained by game theory. 

To perform computations for the creation 
of the deadliest weapon of mass destruction, 
John von Neumann found out that it was 
faster to program a computer than to do the 
computations manually. As there was the 
computer ENIAC in the US around, John von 
Neumann wrote computer programs, algo-
rithms and described a computer architec-
ture. Together with Ulam, von Neumann de-

 
27(von Neumann 1931)     28(von Neumann 1932)
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ped a stochastic simulation, called Mon-
te Carlo method, which is still in use today. 
His novel contributions made him one of the 
founding fathers of computer science and 
Artificial Intelligence. However, his involve-
ment in the creation of nuclear weapons had 
a price. His curiosity let him not only compu-
te models, but also participate actively in the 
construction. He didn’t become very old, he 
died from cancer. 

Perhaps I should mention another famous 
genius among the renowned scientist partici-
pating in the Manhattan Project that sparked 
a major boost in nuclear physics: 25 years old 
Richard Feynman who later was awarded a 
Nobel Prize in Physics for his famous diagrams 
that bear his name 29. Feynman diagrams are 
a primary computational tool to symbolize 
heavy computations in quantum field theory. 
Some mathematicians are used to symbolic 
computations although others reject them as 
a valid mathematical proof. For instance, the 
operations of a braid group can be visualized 
by braided strings so that everybody can see 
immediately the rules without even knowing 
what a group is and how the relations are de-
fined, one just has to pull the strings and to 
unravel them, thus applying in each step the 
correct mathematical rule. 

Feynman diagrams are such symbolic ru-
les that tell physicists what to do without the 
need of a rigorous mathematical proof. Just a 
word of warning, these diagrams depict ma-
thematical computations and not the reality 
(they contain “virtual particles” faster than 
light) – the outcome of the computations tells 
us something about the reality. In fact, these 
diagrams were at first rejected by Feynman’s 
senior colleagues, although their inventor 
could perform computations on a blackboard 
in several minutes, which would take hours 
or days to verify. They describe a perturba-
tive method to compute something that is 

mathematically given by a series. It was Free-
man Dyson 30, who made mathematical sense 
out of these diagrams, and who furthermore 
showed that the series actually diverges 31, so 
he also proved that, mathematically, the series 
doesn’t make sense at all. 

Feynman was an unconventional physicist 
and an intuitionist, so he was pretty far from 
rigorous mathematics. From all math- emati-
cians and physicists mentioned in this paper, 
he may be the one who is furthest away from 
pure mathemtics. As his Manhattan Project 
colleague John von Neumann, Feynman died 
from cancer. 

Having mentioned von Neumann’s role in 
computing, there was another extraordinary 
mathematician who can be considered a foun-
ding father of computer science, the one who 
helped to crack the Enigma code of the Nazis: 
Alan Turing. Contrary to the development of 
an atomic bomb, his involvement in World 
War II may have saved many lives by deciphe-
ring top secret Nazi messages. It seems that 
he was not only the first person who designed 
an abstract computer machine, but also the 
first one who had a clear vision for Artificial 
Intelligence 32. Around 70 years ago, he intro-
duced the so-called Turing test, which does 
not ask if a machine is intelligent but rather 
if a machine can perform tasks that cannot 
be distinguished from the action of an intelli-
gent being. For instance, a computer may play 
chess better than any human and still not be 
able to read Shakespeare, which simply isn’t 
necessary for playing chess. 

The conservative society wasn’t wholly gra-
teful to one of its national war heroes. Turing 
was convicted of homosexual acts and ac-
cepted to undergo a chemical treatment, but 
couldn’t bear the sentence and departed from 
this life. 

The chemical treatment was the ul-
timate “scientific” finding to “cure”                                                    

  29 (Feynman 1949)              30 (Dyson 1949)                  31 (Dyson 1952)                 32 (Turing 1950) 
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ltimate “scientific” finding to “cure” homose-
xuality, based on nothing else than the belief 
that homosexuality is a disease. These “scien-
tists” didn’t understand that sexuality is pure 
pleasure designed to trick humans into repro-
duction but not limited to that, everybody can 
make their own choices as long as they don’t 
harm anyone. A bit of abstraction helps to un-
derstand reality and to get out of clichés.

After World War II, the most decisive im-
pact on mathematics had Nicolas Bourbaki, 
a mathematician who never existed. It was 
a pseudonym for a French collective of top 
mathematicians that aimed at writing a 
complete treatise of analysis and later tried 
to extend the volumes to all important 
branches of mathematics. Very much in 
the spirit of Hilbert, the books started from 
foundational axioms33, focused on generality 
and were written in a stark linear style, that is, 
everything is well founded and deduced from 
previous expositions. On the other hand, the 
authors barely gave motivating examples, they 
seemed to be guided by the idea that a speci-
fic example can never show a complete theory 
and therefore is always misleading. In their 
effort to be complete and self-contained, the 
authors avoided to step outside of their realm 
so that the books contain almost no applica-
tions from other disciplines. Nevertheless, be-
cause of their completeness, the books could 
be found in nearly all math departments; and 
because of their linear style, they were quite 
convenient for math professors to prepare 
their lectures.

Clearly, with the diversification of mathe-
matics after Hilbert and the continuing intu-
itive style of applying mathematics in physics 
and other disciplines (like Poincaré), it was 
time that someone gathered the mathemati-
cal know-how and put it on a solid footing. 
Honestly, the French collective did a superb 
job. However, after World War II and before 

the market was flooded with more pedagogi-
cal text books, Bourbaki’s perspective became 
the predominant style in (European) mathe-
matics and was passed to the next generation.  
Moreover, because of the cold war, space race 
and the fear of a technological gap, both po-
litical sides granted (particle) physics and 
space exploration a huge amount of freedom. 
Mathematics, considered a basic science, 
benefited greatly from these developments, 
nobody from the treasure department asked 
if the money spent on mathematicians will 
produce any revenues. Quantum field theory, 
mathematically still incomplete, provided 
enough challenges for mathematicians. A 
promising way to obtain research funds was 
to relate somehow one’s own work to quan-
tum field theory, it didn’t require to mention a 
nuclear bomb, any advance in nuclear physics 
could be the spark for the construction of a 
more destructive weapon. 

The governments and their finance 
ministers, who usually don’t understand 
much about pure mathematics, never noticed 
that pure mathematicians liked to ask and to 
solve their own questions, sometimes a little 
far from reality. A frequent justification was 
that “it might be useful in the future”. This 
is an interesting way to give one’s life a pur-
pose but a meaningless excuse. Imagine if all 
these smart brains would have dedicated them-
selves to real-world applications, how much 
useful mathematics could they have produced? 

Bourbarki’s style of mathematics created 
a certain arrogance of the purest pure ma-
thematicians toward applied mathematics. 
They started to believe that pure and applied 
mathematics are different subjects and that the 
applied mathematicians were inferior because 
they “only apply our theorems”. The wake-up 
call came with the economic recession when 
research foundations did ask the question 
of financial benefit. Quite a few were upset 

33
 (Bourbaki 1939)
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lications in weaker journals were more suc-
cessful in grant applications. In economics, 
this is the law of the free market, if there is no 
demand, there will be no need for a supply.

The reader may be warned not to stum-
ble into the same pitfall. The question is not 
if pure mathematics is more powerful or 
if applied mathematics is more useful, the 
problem is that there should be no separation 
between applied and pure mathematics. Bour-
baki’s effort was correct and necessary, someo-
ne had to establish the foundations of mathe-
matics, and of course, the so-called “applied” 
mathematicians will always draw inspiration 
from the so-called “pure” mathematics. On 
the other hand, all mathematicians, no matter 
if they consider themselves pure or applied or 
algebraists or analysts or geometers or topolo-
gists or whatever, should ask themselves why 
they are doing what they are doing and have a 
valuable goal in mind, which could in fact be 
a vision of what mathematics should achieve 
in the future.

If Bourbaki’s goal has ever been to collect 
the whole mathematical knowledge in a series 
of books, then the collective failed already 
during its existence. Mathematics developed 
far too quickly for a handful of debating elite 
mathematicians to keep up with compiling all 
knowledge into books. At this point, it would 
also be too exhaustive to mention all brilliant 
mathematicians of that century. The easiest 
way to name some masterminds would be to 
list the Fields medalists, they all deserve to be 
called geniuses. To keep the paper short, I will 
bring up only a few exceptional ones.

The Fields Medal is often regarded as the 
Nobel Prize in Mathematics. There are other 
prestigious international awards in mathe-
matics, for instance the Abel Prize and the 
Crafoord Prize were created as a complement 
to the Nobel Prize. What makes the Fields 
Medal so special is the age limit. The Fields 

laureates must have obtained their ground-
breaking results at an age under 40 so that, 
unlike a 97 years old Nobel laureate, they can 
still shape their discipline in the long term. 
That this actually happens can be seen in the 
Citation Index. Lifetime citations of Fields 
medalists usually ramp up from hundreds to 
thousands. It’s fair to say that the Fields Me-
dal committees have now a greater impact on 
mathematics than Bourbaki. 

It has wildly been speculated why Nobel 
didn’t establish a prize in mathematics. Ru-
mors spread that the acclaimed mathemati-
cian Gösta Mittag-Leffler was the cause. Some 
say that Nobel felt an antipathy for Mittag-
Leffler that passed on to mathematics, others 
say that  Nobel felt betrayed by his contem-
porary in a love affair, even the name of the 
alleged woman was disseminated: Sofia Ko-
valevskaya. Sometimes the simplest explana-
tion seems to be the right one. Nobel wrote 
in his will that the prizes should be created 
for those that accomplished the “greatest be-
nefit to mankind”. So, what is the benefit to 
mankind if some talented mathematician 
aged under forty proves the Riemann hypo-
thesis? It would definitely be worth a Fields 
Medal and mathematicians all over the world 
would be delighted, but most people outside 
mathematics, including famous engineers and 
inventors, can’t see much benefit to mankind 
in it. No one seems to be surprised that there 
is no   Nobel Prize in Fine Arts. 

What is true though is that Mittag-Leffler 
helped Sofia Kovalevskaya 34 to get a position 
at Stockholm University. This made her the 
first confirmed female professor in mathe-
matics and she was the first woman to earn 
a PhD, too. Note that she is also the first wo-
man mentioned in this paper, which has a sad 
reason. Until late 19th century, women were not 
allowed to study at universities. What science 
has irretrievably lost by excluding half of man-
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kind from research becomes evident from her 
PhD thesis, in which she proved the main exis-
tence and uniqueness theorem in the theory 
of analytic partial differential equations34.

The most influential woman in math-
ematics was Emmy Noether, one of the first 
women to earn a habilitation (teaching li-
cense), which was rejected in her first attempt 
because of a ban for women. Her contribu-
tions to abstract algebra are outstanding and 
still part of all advanced courses in ring theory 
(objects with addition and multiplication like 
the integer numbers). In physics, she proved 
that any continuous symmetry leads to a con-
servation law35. This includes in particular 
the most important law of nature, the conser-
vation of energy, which follows from an in-
variance in time translations. Thus it can be said 
that humanity owes the discovery of the most 
important law of nature to two women: Émilie 
du Châtelet was the first person to postulate it 
and Emmy Noether proved it mathematically.

Among the Fields medalists, there is 
only one female mathematician, Maryam 
Mirzakhani. Unfortunately she didn’t live 
long enough to continue her great achiev-
ements. Her work is remotely related to the 
groundbreaking ideas of another Fields 
medalist, who stands out by his unusual per-
sonality: Alexander Grothendieck. Once more 
it will be shown that the behavior of a ratio-
nal mathematician doesn’t have to be rational.

Grothendieck had a difficult childhood. 
His father was a Jew, anarchist, a migrant from 
the Soviet Union and illegal in Germany, so 
there was hardly another combination that 
would have triggered more hate from the Nazis, 
no matter what a nice person he might have been.
Because of the imminent threat of the Nazis, 
the family fled to France, but was captured 
there, and Alexander’s father was one of the first 
to be killed in a concentration camp. Alexan-
der and his mother survived the Nazi regime. 

After World War II, he first studied math-
ematics at the provincial University of 
Montpellier, later at the more prestigious École 
normale supérieure in Paris, and then specia-
lized in functional analysis in Nancy, working 
with Fields medalist Laurent Schwartz and 
Bourbaki cofounder Jean Dieudonné. He soon 
became a rising star in functional analysis, 
studying the scary subject of topological ten-
sor products, where different completions yield 
different algebras that are difficult to classify. 
Grothendieck solved the analysis problem with 
abstract algebraic methods 36. What a luck for 
mathematics that this algebra genius was driven 
into functional analysis! Later he laid the alge-
braic foundations of the Atiyah-Singer index 
theorem, mentioned previously as one of the 
most celebrated theorems of the 20th century.

Knowing his childhood, it is no sur-
prise that Grothendieck was a pacifist. To 
avoid military service, he kept his stateless 
refugee status, traveled to Brazil and the US, and 
finally ended up in Paris again. There, at the 
Institut des hautes Études scientifiques (IHÉS), 
he found the perfect research environment as 
Paris turned into the center of algebraic geo-
metry. That his talent was widely recognized 
can be seen in the fact that he became a mem-
ber of the Bourbaki collective, the ultimate step 
of his rise from a provincial math student to 
the top elite circle of French mathematicians.

Grothendieck’s research was substantially 
driven by the attempt to prove the Weil con-
jectures 37. The Weil conjectures arise from 
the interest of counting solutions of algebraic 
expressions, where the solutions belong to a 
finite set of numbers. Here, numbers mean a 
set that allows to perform the operations ad-
dition, subtraction, multiplication and di-
vision. An example is the set {0, 1} with the 
usual operations and the condition 1+1= 0.
So it is not true in mathematics that 1+1 is 
always 2, the number 2 might simply not be 

34 (Kovalevskaya 1875)                  35(Noether 1918)                    36(Grothendieck 1953)                        37(Weil 1949) 
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part of the game. This is actually exactly the 
way in which a single bit in a computer per-
forms its computations. Such numbers and 
solutions of algebraic expressions have for in-
stance an application in coding theory. André 
Weil associated to the counting of solutions a 
function that resembles the Riemann zeta func-
tion which gives rise to Riemann’s hypothesis.

Starting from a few examples, Weil 
made four conjectures about this func-
tion that became Grothendieck’s main mo-
tivation for studying algebraic geometry.

Although Grothendieck proved only 
parts of the conjectures and didn’t succeed in 
proving all of them, his work on the Weil con-
jectures shows clearly his extraordinary style 
of thinking. Grothendieck was a true master 
of abstraction. When he tried to solve a pro-
blem, he started to understand it in an abstract 
manner, discovering in that way new ques-
tions. If he couldn’t find a solution, he passed 
to more abstraction to understand the true 
nature of the problem, and then to more ab-
straction to unify different theories, and then 
to more abstraction to reveal different aspects 
of the problem as parts of the same whole. 
At the end, his final goal was not the proof 
of the conjectures but to establish the right 
framework in which the conjectures could be 
proven naturally. Grothendieck didn’t seek 
fast fame by solving these difficult math-
ematical problems, rather the contrary, the 
proof of these conjectures should be the ulti-
mate evidence that he revealed the correct un-
derlying principles. When his student and now 
Fields medalist Pierre Deligne showed him the 
proof of the final and hardest part of the con-
jectures 38, Grothendieck was evidently disap-
pointed by the “trick” that Deligne had been 
using. Many believed that Grothendieck felt envy 
toward his former student but I don’t think so.
I believe that Grothendieck was honest-
ly disappointed that the proof didn’t 

emerge from his foundational theories, so 
he may have felt in that moment that his 
mathematical endeavor will remain unfinished.

His way of thinking shaped                                                                                             
a mathematical discipline  that mathematicians 
call category theory. Category theory is a form 
of abstraction that reduces everything to its   
essential structures and adds then step-by-step 
more properties. Grothendieck was so fond 
of this theory that he wanted to lay the foun-        
dations of mathematics completely in category 
theory, as much as Bourbaki wanted to lay 
the foundations of mathematics in set theory,                                                                                       
obviously quite a different way of thinking.

Absolutely deserved, Grothendieck was 
proposed to receive the Fields Medal in 1966 at 
the International Congress of Mathematicians 
in Moscow. It is an irony of fate that the con-
gress was held in the country from which his 
father escaped because of his  anarchist ideas. 
Having strong political views similar to his fa-
ther, it is no surprise that Grothendieck refused 
to travel to Moscow.

Shortly after receiving the Fields Medal (in 
absence), the decline of his mathematical ca-
reer started. Opposing actively the Vietnam 
War and being caught up in the 1968 student 
revolts, he found a new obsession in politi-
cal activism. Grothendieck launched a po-
litical group called Survivre, a movement 
fighting for the survival of all life threatened 
by the destruction of the environment and                                          
militarism. He tried to attract fellow                                                                                  
mathematicians and senior colleagues, but 
was mostly met with incomprehension. When 
Grothendieck learned that the IHÉS re-                                                           
ceived military funding, he quit his job at the 
IHÉS and, after some temporary positions,                                    
returned to the University of Montpellier, 
the same provincial university where he once 
came from. His social life deteriorated even 
further, he withdrew from mathematics, cut 
ties with family members and friends, and re-

 38(Deligne 1974)
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39 (Grothendieck 1989)

treated from public life to a small village in the 
Pyrenees. There he spent his final years like a 
reclusive monk dedicating himself to religion 
(e.g. Buddhism), meditation, spirituality and 
introspection.

His last years were only disturbed by intru-
sive admirers with dubious motivations. I can’t 
imagine that a perfect stranger knocks on the 
door of a Nobel Prize winner saying “Madame, 
you are famous, I would like to talk with you 
about chemistry!”

Much has been speculated about his rea-
sons to withdraw from mathematics, and his 
post-mathematical life has attracted a lot of                                                                                                           
curiosity. Grothendieck wasn’t completely        
silent in all these years, rather the contrary, he 
wrote letters to colleagues and thousands of 
pages of “Meditations” to explain himself in a 
poetic style that is a bit difficult to follow and 
often leads to nowhere. His most famous work 
in this time is Récoltes et Semaille, which many 
regard as a personal judgment about math-                                                                                                 
ematics expressing dissatisfaction and re-     
sentments. This seems not to be true, although 
he elucidates his disappointments of a “certain 
sort” of colleagues, he writes quite positively 
about his “elders” and friends in mathematics. 
Récoltes et Semailles appears to be an attempt 
to reflect about his own life as a mathematician, 
to illuminate his passion for knowledge, and to 
share his visions for mathematics. 

Instead of reading thousand pages of reflec-
tions, there is a faster way of understanding 
Grothendieck. In 1988, Grothendieck was to be 
awarded the prestigious Crafoord Prize which, 
as mentioned above, is considered a comple-
ment of the Nobel Prize. Grothendieck refused 
the award and explained his reasons in a letter 
sent to twelve scientific journals 39. Apart from 
making clear that he doesn’t need more mate-
rial wealth and that the money could be used 
better for those in need, he did in fact com-
plain about a decline of ethics and values in the 

scientific “milieu”. 
So, what might he have been complaining 

about? There are things happening in math-                                                                                                                
ematics that don’t meet Grothendieck’s high 
ethical standards. Grothendieck mentioned 
explicitly theft among colleagues, he probably 
was upset that some ideas from his seminar 
at IHÉS surfaced in mathematical journals. 
He also didn’t like the elite thinking at the                                                                             
renowned research centers in Paris and in the                                                               
Bourbaki collective. Grothendieck emerged 
from a precarious social background and felt 
that he had to prove his worth to be accepted 
in the elite circle that showed a certain ar-                                                          
rogance toward those who don’t reach the                                                  
highest levels. In Récoltes et Semailles, he 
complained about egocentric characters. Of                                            
course it hurt him that colleagues and                                                                                       
supposed friends publicly commented                
without comprehension on his spiritual path, 
but he was also annoyed by those who des-               
pise the “soul”. This can be translated in a lack 
of vision and passion for mathematics, all that 
counts is the number of publications and in 
which journals. Abstraction became a means 
for the production of “results” without any mo-
tivation, just to define another area in which 
one can harvest a few new theorems. Known                                                                                 
theorems are rewritten in a more abstract or 
generalized manner to claim an original re-
sult. If a theorem is too difficult to prove, the            
necessary conditions are stated in a definition 
in order to avoid hard work in the proof. The 
publications of friends are excessively cited so 
that the chances are high that the unaware ed- 
itor sends the manuscript to a “specialist in the 
field” who certainly accepts the paper. In fact, 
the high number of mathematical papers that 
will be forgotten in the future is an obstacle 
for the progress of mathematics rather than 
an advance. Mathematics is getting too dis-
persed to generate profound impact by collec-
tive efforts, too much time is wasted by proving 
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useless conclusions. Competition, not o
nly for prizes and rewards, started to domi-
nate mathematical research although collab-
orative work for a common goal would move 
mathematics forward at a faster pace.

However, Grothendieck’s refusing letter 
contains another hint at the true reasons for 
his withdrawal from society. He writes about 
an “unprecedented civilization collapse”. This 
is a typical, irrational, catastrophic thinking 
of people with an increased anxiety in a cri-
sis situation. The withdrawal from society on 
the one hand and the aggressive tone of the 
letter on the other indicate “flight or fight” re-
sponses to stressful events. Writing thousands 
of pages to explain oneself to the world from 
which one has retired is quite the contrary of 
finding inner peace, it was done with the same 
obsession as his mathematical research. Such 
symptoms can be found in a manual of mental 
disorders. I am not making a diagnosis and I 
am not able to do so. All I want to say is that, 
instead of trying to find an explanation for 
irrational behavior, friends and acquaintances 
should think about if a person close to them 
needs professional help.

The next story belongs to the present cen-
tury but resembles a lot the last one, there-
fore I will tell it now. There is a mathemati-
cian who did not only reject the Fields Medal 
but also the Clay Millennium Prize of one 
million dollars. Up to date, only one of the 
seven Millennium Prize Problems has been 
solved. The genius, who did it, is Grigori Pe-
relman and the problem was the above men-
tioned Poincaré conjecture. A striking simila-
rity of the two stories is that both complained 
about a decline of ethical standards. Yet there 
is a huge difference between the two cases: 
Perelman’s behavior was always consistent. 
Of course the media went crazy and journa-
lists made big fuss about it. What these ladies 
and gentlemen don’t understand is that not 

everybody has the same ethical standards, not 
everybody has the same needs, not everybody 
feels justice the same way, and not for every-
body one million dollars have the same value.

There might be someone who prefers be-
ing who he is over being a millionaire. Grigori 
Perelman hasn’t had many friends and didn’t 
spend much money before he got famous. 
He did what he liked most, venturing in diff-
icult mathematics, a world of its own. He had 
what he needed, much like Grothendieck who 
lived his final years from a small pension. 
Why should more money and more publi-
city make him more happy? To all admirers, 
please don’t knock on his door shouting “Sú-
dar’, you are famous, I would like to talk with 
you about mathematics!”

Perelman proved the Poincaré conjecture 
by using a technique developed by Richard 
Hamilton in the 1980’s called Ricci flow 40. 
Imagine that your beautiful spherical car 
has crashed. What the Ricci flow does is to 
smoothing out the deformations back to a 
round shape like a mechanic. But if the me-
chanic doesn’t work carefully, he may create 
new dents and spikes known as singularities in 
mathematics. Richard Hamilton realized that 
his tools may be used to prove the Poincaré 
conjecture but he was not able to deal with the 
singularities. Perelman had a background in 
Alexandrov spaces, which behave fairly more 
singular than round spheres, and found a way 
how to deal with the singularities. He proved 
that some kind of singularities don’t even oc-
cur, and others can be removed by cutting and 
paste techniques. Perelman was totally aware 
of what his findings mean – the first solu-
tion of a Millennium Prize Problem, thus he 
published it on a preprint server 41 and sent 
copies to several specialists in the field so that 
the proof can publicly be verified instead of 
an anonymous peer review. As Perelman said 
in an interview: “If the proof is correct, then 

 40 (Hamilton 1982)                        41(Perelman 2003)
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no other recognition is needed.” However, not 
sending it to a peer-review journal meant not 
fulfilling the conditions of the Millennium 
Prize Problems so that a mathematician with 
high ambitions and lower ethical standards 
might consider the race as still open. 

One of the mathematicians, who received 
directly a copy from Perelman, was Fields 
medalist Shing-Tung Yau. He received the 
Fields Medal for proving e.g. the Calabi con-
jecture 42, which later became important 
in string theory because it allows to decide 
when a manifold can be used to compactify 
the extra spatial dimensions in string theory. 
These manifolds are now known as Cala-
bi-Yau manifolds. 

At the turn of the century, his glory had 
already faded and he acquired new fame as 
someone who meddles in disputes and po-
litics. Hamilton was closely related to his 
research group and Yau very likely saw the 
possibility of proving the Poincaré conjectu-
re by using Hamilton’s techniques. It might 
have felt worse than a fourth position in the 
Olympic Games to see that some no-name 
finished the proof, but nobody should be sur-
prised that suspicions were aroused when 
two of his former students published a paper 
about a complete proof of the Poincaré con-
jecture 43 in the Asian Journal of Mathematics, 
where Yau is coincidentally one of the two 
chief editors. No serious referee could have 
ignored Perelman’s work and the suspicions 
were substantiated when the authors had to 
publish an Erratum 44 in which they admitted 
that large part of their arguments were already 
obtained by Perelman. Now Perelman had 
to make a choice, either to win one million 
dollars and to be part of this circus of dis-
putes, accusations, dishonesty and low ethi-
cal standards, or to disappear in order to keep 
his honesty and high ethical standards intact. 
To keep his inner peace, he had to choose the 

second.
I would like to mention the story of a 

mathematician who deserved the Fields Me-
dal and didn’t get it. Of course, there are many 
of them, but one narrowly missed the medal 
because of the age restriction. Slightly below 
the age limit, Andrew Wiles submitted a pa-
per on elliptic curves 45

 that implied the proof 
of a very famous problem that is astonishingly 
simple to state but resisted a proof for more 
than 350 years. The problem is known as Fer-
mat’s Last Theorem and conjectured that the 
equation               does not have solutions 
for positive integers a, b and c if n > 2. Euclid 
knew already that the case n = 2 has infinite 
many solutions (Pythagorean triples). Fer-
mat may not have had such strong ethics as 
Perelman because he wrote in the margin of 
a book that the equation doesn’t admit solu-
tions for n > 2 and that he found a marvelous 
proof which is unfortunately too long write 
in the margin. His remark probably put a few 
mathematicians in the wrong direction be-
cause it seems that an elementary proof does 
not exist. 

Wiles proved the theorem with heavy 
machinery from Grothendieck’s algebraic 
geometry, and by combining the theory of 
elliptic curves with something that has to do 
with (weighted) invariance properties, a sub-
ject that can easily become complicated. In 
the theory of elliptic curves, elliptic curves do 
not look like ellipses, rather like a donut. The 
name comes from the fact that these functions 
arise as inverses of elliptic integrals, which 
appear in the calculations of perimeters and 
areas of ellipses and ellipsoids. No known ele-
mentary function solves these integrals, thus 
they are interesting in their own right and 
intensely studied. Studying the inverse func-
tions is alike to a dual approach. Wherever 
there is mathematics, there is a dual struc-
ture, the cleverest mathematicians know how 

  42(Yau 1977)              43 (Cao and Zhu, A Complete Proof [...], 2006)                      44 (Cao and Zhu, Erratum, 2006) 

45 (Wiles 1995) 
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to use it. The surprise in this example is that 
the inverse function can be studied in the 
complex plane (I wrote already about the 
fabulous properties of this number system), 
there they behave very well – as if they were 
defined on a donut.

If someone writes down all the additional 
knowledge accumulated after Fermat’s death 
that is necessary to prove Fermat’s Last Theo-
rem with Wiles’ methods, then the exposition 
will easily exceed thousand pages, obviously a 
bit more than what would fit in the margin of a 
book. Wiles worked six years on the proof and 
didn’t publish much in this period, actually so 
little that he would have felt the consequences 
at a university or in a country with a rigid evo-
lution system, deeming his attempt as a fai-
lure before its completion. Unfortunately, the 
initial proof contained an error, so that Wiles 
had to work another year to fill the gap and 
passed the age limit for the Fields Medal. The 
International Mathematical Union, which is 
in charge of awarding the Fields Medal, hono-
red these achievements with the first and only 
silver plaque. 

The only physicist to receive the Fields 
Medal is Edward Witten. He is best known 
for his work in string theory, quantum gravi-
ty and supersymmetry, in short, the theory of 
everything. Physics has a problem with uni-
fying quantum field theory – the theory of 
eleymentary particles and their electromag-
netic, strong and weak interactions – and gra-
vity, commonly known as the relatively weak 
attractive force between masses but mathema-
tically more precisely Einstein’s theory explai-
ning how energy warps our space-time. The 
puzzle is why gravity behaves so differently 
than the other inter-actions. Whoever solves 
the puzzle is a contender for the Nobel Prize.

String theory is (was?) a candidate for the 
theory of everything. The basic idea is quite 
natural, unless otherwise proven, there is no 

reason to assume that elementary particles 
are point-like, all this wave function business 
hints otherwise. Mathematically, the next 
difficulty is to step up one dimension, i.e. 
from 0-dimensional particles to 1-dimensio-
nal vibrating strings, then to a 2-dimensional 
membranes (2-branes) and, more generally, 
to p-branes, where p denotes the dimension.

Curiously, string theories are only consis-
tent in higher dimensional space-times, for 
instance in 26 dimensions, 10 dimensions or, 
in the case of Witten’s unifying theory, 11 di-
mensions 46. The fact that our senses perceive 
exactly three spacial dimensions is not a proof 
that the elementary particles live only in three 
spacial dimensions. Actually the mysterious 
dark matter and dark energy could be effects 
from higher and lower dimensions. The 
issue is what to do with the extra dimensions. 
Witten et al. 47 proposed to compactify them 
with manifolds that have the right properties 
like being “very small”, not breaking the con-
sidered symmetries and being Ricci flat so 
that they don’t produce gravitational effects.
Examples of manifolds that satisfy these con-
ditions are the above-mentioned Calabi-Yau 
manifolds. 

Once the mathematicians got to know the 
importance of Calabi-Yau manifolds in string 
theory, there was no stopping the research of 
Calabi-Yau properties. Suddenly generalized 
Calabi-Yau manifold appeared, Calabi-Yau al-
gebras, Calabi-Yau categories, and so on, each 
time a bit further away from the original mo-
tivation. Mathematically it is justified, math-
ematicians want to understand and to classify 
these structures, or any other. String theory 
had a huge impact on several mathematical 
research areas like cobordism, 4-manifolds, 
differential geometric invariants, moduli spa-
ces, Chern-Simons theory, knot theory, to 
name a few. 

Nevertheless, being a physical theory, it 
 46

 (Witten 1995)                                  
47

 (Witten et al. 1985)
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is also justified to ask the question if string 
theory has anything to do with reality. Unfor-
tunately, no experiment has ever proven string 
theory to be a valid model. On the other hand, 
there is so much freedom and there are so 
many parameters in string theory that it mi-
ght be possible to design a mathematical mo-
del that matches known experiments without 
describing the actual physical reality. (May-
be the extra dimensions don’t exist?) String 
theory is one of the most advisable examples 
to ask the question when is the best time to 
stop research on a theory that doesn’t produce 
verifiable results. After fifty years? Hundred? 
When a better theory is found? My prediction 
is that disciples of leading string theorist will 
continue to study string theory, and their dis-
ciples too. 

Another Fields medalist, who created an 
exotic theory about the nature of reality, is 
Alain Connes. In his PhD thesis, he discov-
ered time, that is, the unique (up to inner 
automorphisms) 1-parameter group leading 
to equilibrium states in quantum statistical 
mechanics 48. Then he got the Fields Medal 
for the solution of a difficult classification 
problem of operator algebras 49, the sort of 
operator algebras that build up algebraic quan-
tum field theory. After receiving the award, he 
used his freedom at the famous Field medalist 
producing research institute IHÉS to create a 
completely new mathematical theory: non-
commutative geometry 50. 

The motivation for noncommutative ge-
ometry is quite convincing. Classical me-
chanics and general relativity have a purely 
geometric formulation in terms of symplectic 
and pseudo-Riemannian manifolds, respec-
tively. On the other hand, quantum physics 
deals inherently with noncommutative op-
erators. For many years, mathematicians and 
physicists tried to deduce quantum mecha-
nics from classical mechanics although the 

opposite way would be more natural, namely 
to view classical mechanics as a many-par-
ticle-limit of the quantum behavior of the 
constituent particles. If the classical theories 
are of geometric nature, so should be the non-
commutative operator algebras in quantum 
theory.

Connes and some physicists went even 
further by considering the possibility of a 
noncommutative space-time at the very tiny 
Planck length scale. The reason comes from 
a measurement problem. If one wants to de-
termine a point in space, one has to perform 
a measurement to “see” the point, and the 
only possibility is a scattering-type experi-
ment with a particle of non-zero mass; pho-
tons always move too fast, i.e. arrive from a 
different place. To measure the point more 
and more precisely, more and more mass (or 
energy, which is the same – says Einstein) has 
to be concentrated in a smaller and smaller 
region, therefore creating eventually a micro 
black hole, that’s what Einstein’s theory pre-
dicts. But a black hole is characterized by an 
event horizon beyond which no information 
reaches an observer. The theoretical minimum 
radius, which does not depend on the energy, 
is known as the Planck length. So, what is the 
point of considering a point in space that can 
never be measured below Planck length? It is 
pointless to speak of the existence of some-
thing that can never be observed.

Connes proposed not to study the points 
but the functions defined on such (quantum) 
spaces, for instance the coordinate functions. 
This matches exactly the idea of algebraic ge-
ometry, in fact, Grothendieck already propo-
sed a topos category which avoids completely 
the notion of a point in a topological space (= 
space with a concept of continuity), though 
without a physical motivation. Heisenberg’s 
uncertainty principle teaches us that there is 
a minimum volume in 2-dimensional quan-

  
 
48(Connes 1973)                               

49(Connes 1976)
                  

50(Connes 1994)
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tum phase space, exactly the same effect can 
be obtained by considering noncommutative 
space-time variables. 

As appealing as this idea might be, the 
problem is again the experimental ver-                                                                                  
ification. Only if certain quantum states can 
be maintained stable over a long period of 
time, there exists a chance of measuring non-
commutative space-time effects. On the other 
hand, it is already clear that this theory will                                                                                            
never be useful for creating more powerful 
power stations nor more deadly weapons of 
mass destruction since we are talking about  
something at a very, very tiny scale. So, why 
bother at all? One reason was the hope to avoid 
the infinities in the above mentioned Dyson 
series. Other reasons are more of mathema-
tical nature. There are (topological) spaces, 
like foliations and Penrose tilings, along with 
physical topological insulators, that behave 
badly when studied with conventional me-
thods but possess a rich noncommutative 
geometry. It is no surprise that Witten incor-
porated these structures in string theory 51. 

Even if all hopes of describing a non-
commutative space-time fail, it seems math
ematically worth to study noncommutative 
geometry because it is not a specialization 
but a unifying generalization. It incorporates 
under the same framework a wide range of 
different disciplines like algebraic geometry, 
differential geometry, differential operators, 
operator algebras, topology, algebraic topolo-
gy, Lie groups, representation theory, spectral 
theory, invariant theory, index theorems, etc., 
and generalizes them to a possible quantum 
world. At least, in this way, one can learn a lot 
about mathematics. Moreover, mathematics 
works best when many disciplines intersect. 

Finally let me mention the most prolific 
mathematician of the last century, working 
in number theory and discrete mathematics 
(among others): Paul Erdős. Number theory 

accompanies mathematics since the begin-
ning, and prior to the digital age, it was re-
garded by many mathematicians as the high 
art of mathematics but completely useless, 
i.e. without practical applications. Now it is 
indispensable in computer science and cryp-
tography. Again one might ask the question 
when to stop the research on a useless theory. 
After fifty years? Hundred? Immediately, until 
an application demands research on it? Al-
though number theory is a good example that 
it would have been a bad decision to abandon 
research with future applications, I person-
ally consider it a bad habit of mathematicians 
to justify their work with the words “it might 
turn out useful in the future”. It might also be 
a waste of resources for fruitless theories.

Erdős is not known for establishing a new 
theory, but as one of the greatest problem 
solvers. He wrote more than thousand papers 
and had several hundreds of collaborators 
who he found by constantly traveling around 
the world and living an eccentric, yet spar-
tan lifestyle dedicated solely to mathematics. 
It occurred to someone to define the Erdős 
number as the collaboration distance to Paul 
Erdős. So, direct collaborators have Erdős 
number 1, and a collaborator of a collaborator 
who collaborated with a collaborator of Erdős 
has Erdős number 3. It is amazing to see that 
nearly all mathematicians with a couple of 
coauthors have a (finite) Erdős number and 
almost all of them have a number less than 8. 
This shows that mathematicians are well con-
nected and refutes the image of mathemati-
cians as hermits solving problems behind clo-
sed doors.

In conclusion, what history shows us is that 
mathematics and other sciences were strongly 
influenced by individual persons called “ge-
niuses” (in a simplistic view, some geniuses 
don’t like to be called genius). These charac-
ters with groundbreaking results and an in-

51 (Seiberg and Witten 1999)
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credible impact on human progress can be 
anybody and anything: men, women, 
migrants, conservatives, conformists, 
rebellious, perfectionist, intuitionist, innova-
tive, creative, egoistic, egocentric, eccentric, 
ascetic, with high ethical standards, with low 
ethical standards, homosexual, with men-
tal disorders, blind – not to mention all the 
clichés of mathematicians that are fed by some 
protagonists.

Needless to say that there are many more 
geniuses who were not mentioned here, 
and even more who can abstain from being 
called so. Each year, a huge number of research 
papers are published which will be complete-
ly forgotten in a few decades. Can’t we leave 
mathematics in the hands of the top elite mas-
terminds, like many radio stations that play 
always the same songs of a few famous ones 
from the billboard charts, instead of cluttering 
libraries and webpages with useless publica-
tions? Actually, a collective effort of problem 
solving, e.g. on webpages specially designed 
for this purpose, could lead to a much faster 
progress in mathematics and other sciences 
than a narrow-minded competitive behavior 
(Who is the best? Who writes more papers?), 
since numerous persons generate more new 
ideas on a specific issue than a single human. 
On the other hand, the theory of the free mar-
ket tells us that competition always leads to 
progress.

The question needs no answer because it 
won’t change in the near future. However, the 
answer to the question if it is worth that so 
many mathematicians explore mathematics 
is a completely different one. First, mathema-
tics trains people in a particular way of thin-
king: abstract, logic and deductive. A society 
that produces a great amount of mathema-
ticians has many people available for tasks 
that involve abstract, logical and deductive 
thinking. Only if the environment is not 

fruitful enough, mathematicians become use-
less. Furthermore, nobody knows if the next 
genius comes from London or Morelia, so the 
stage should be set in both places. I can also 
see a benefit in the production of the count-
less, soon forgotten publications. They serve 
as a resonance of the top research. Those areas 
with the most vibrant research activities will 
survive, others will slowly decline.

Looking at the history, it can be seen that 
progress was mostly inspired by applications.
Working solely in potentially useless theories 
seems to be a recent phenomenon, although 
there are also examples like number theory 
that were considered useless for centuries but 
found a late application. However, nobody 
should take those examples as a cheap excuse 
to do whatever (s)he wants to do without ever 
asking the question what the motivations are 
for doing it. If it is not a direct application, it 
might be a vision of what mathematics should 
achieve in the future.

Anyway, a trend can be observed that 
governments and research funds prefer appli-
cations over purely theoretical research. This 
is perfectly understandable. Why should a 
sponsor not ask what to get back from the 
money? Pure mathematicians complain about 
it, they see the future of pure mathematics 
threatened. Having said that, I can’t see the 
problem. If mathematicians focus on con-
crete problems, they will derive new, power-
ful, abstract theorems, as some of their heroes 
did in the past. It’s the division between pure 
and applied mathematics, which I regard as a 
problem. Now, if this division persists, what is 
the future of pure mathematics?

Today, September 19, 2021, I can predict 
the future of pure mathematics with absolute 
certainty: It will be an evolutionary process. 
As long as pure mathematics has a benefit 
for the society, it will survive. For instance, 
if pure mathematicians produce highly ca-



 228 Wagner Elmar.

pacitated teachers at all educational levels, or 
qualified innovators with unusual ideas in the 
private sector. There will surely be a decline 
in research funds allocated to pure math-
ematics, which pushes more and more resear-
chers into applied math. Nevertheless, the 
greatest geniuses are free spirits that cannot 
be caged, they will always revolutionize sci-
ence without asking if the society calls it pure 
or applied.

The Present

.
The Future

The past has seen many scientific revolu-
tions, often initiated by individual persons 
but always carried on by collective effort. We 
don’t have to wait for the next big shot, the 
next revolution has already started!  

The future will be revolutionized by Arti-
ficial Intelligence and Machine Learning, as 
much as computers and the internet revolu-
tionized our daily life. It is the first time in the 
history of mankind that machines are able to 
learn much faster than humans; it is the first 
time in the history of mankind that com-
puters develop something that may be called 
intelligence, each time faster than humans, 
and finally they will teach themselves. This 
is the beginning of an exponential growth! 
Better machines will train future machines 
to become better, knowledge and capabilities 
will increase at an astonishing speed. Com-
puters don’t need to be punished by death if 
they make mistakes so that natural selection 
evolves advantageously, computers can be re-
started and can learn from their mistakes 
again and again. 

It doesn’t matter if these machines are good 
at a single task, we can build many of them 
for different jobs. What matters is that they 
perform their tasks better than human minds. 

Wherever there are strict rules, like chess, 
data analysis or mathematics, machines will 
outperform our brains because brains don’t 
evolve so fast. The computer program Alpha-
Go Zero learnt to play Go by playing against 
itself and not only surpassed all professional 
human players in a few days, but also all pre-
vious versions, accumulating more knowl-
edge than human mankind in thousands of 
years 52. No human will ever again become 
world champion in Go. 

Go is just a game, but multi-resistant bac-
teria are a serious threat to our survival. Last 
year, a team from MIT let machines analyze 
data from known antibiotics and millions of 
molecule structures 53, an impossible task for 
a crew of biologists and chemists. The algo-
rithm did not only identify powerful new 
kinds of antibiotics, it also found one against 
a strain previously considered untreatable. 
Similar to Go players, researchers were stuck 
in their beliefs which molecules would be 
the correct ones and “discovered” always the 
same structures. The machine had no be-
liefs, it learnt everything from scratch and did 
moves no one else has done before. 

The next task is to analyze the human 
DNA, obviously too much information for our 
brains. In computational biology, “world 
championships” of protein structure predic-
tion are organized among more than 100 par-
ticipating research groups. The goal of these 
“games” is to identify protein structures from 
amino acid sequences. It doesn’t need much 
fantasy to understand its potential use in 
medical drug design and in the creation of 
new enzymes in bio-engineering. Artificial 
Intelligence also assists already the inverse 
process, namely protein design, evidently with 
the same potential applications. Last year’s 
winner was Google subsidiary Deepmind, 
the same research laboratory that created 
the world champion in Go 54. No one should 

52 [4]                           53 [5]

                

54 [6]
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seriously be surprised that the world cham-
pions come from a private company with a 
huge amount of money and salaries higher 
than those of university professors. With the 
actual (public) university funding, the race is 
already lost to the big tech companies and an 
authoritarian regime.

I am not pretending that there is no dan-
ger although Artificial Intelligence doesn’t 
have free will. Bad people can show them 
bad things, I don’t think I need to explain it 
further. Machines are as “good” as we make 
them, and as good and as bad as us – their 
creators. Imagine that a machine receives 
randomly data from the internet, how much 
garbage will it learn? Hopefully nobody will 
be so stupid to feed them with piles of fake 
news, but someone was already so intelligent 
to let them learn from criminal statistics in the 
US for the creation of suspect profiles. Now 
it’s too late, now they are already as biased 
as middle-aged, white, male police officers – 
exactly as those who collected the data. 

If pure mathematics turned out one day 
to be the most powerful science, machines 
could be taught to read math articles, all of 
them, also the long ago forgotten, so take care, 
someone may find a mistake. Maybe they 
process only very carefully selected ones, it 
doesn’t matter, they will definitely be able to 
store the exact content of many more research 
results than a human can read and understand 
in his life. The first step serves just for storing 
information, just to accumulate knowledge 
without being able to use it. In parallel, they 
could learn from this information, taught by 
a human or another machine. Then they are 
prepared for the search of new connections, 
first randomly, but since the beginning di-
rected. Finally they will be capable of finding 
new theorems, but contrary to humans, none 
will ever be forgotten again, all data will be 
saved for centuries, and they can accumula-

te more and more theorems at a faster pace 
than humans, no human will be able to cha-
llenge them. If they find a connection that 
they can’t prove or disprove, like Riemann’s 
hypothesis, someone may show them to call 
it a conjecture.

As alluded in the first line of the previous 
paragraph, this fictional scenario only ha-
ppens when the benefit justifies the effort. If 
there is no (financial) reward in finding the 
best match between an 11-dimensional string 
theory and all known parameters and outco-
mes of measurements, nobody will start such 
an enterprise. However, what has already star-
ted and will gain a momentum that surpasses 
human comprehension is the search for new 
and more efficient algorithms in data analysis.

A country not investing in Artificial In-
telligence and Machine Learning will be left 
behind like a country not investing in com-
puters and internet technologies. If someone 
in charge reads this, I wish her/him to make 
the right decisions and good luck!
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